On the approach problem for a control system on a finite time interval
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 111-154

Voir la notice de l'article provenant de la source Math-Net.Ru

A conflict-controlled system in a finite-dimensional Euclidean space is considered. We study the game problem of approaching the system to the goal set in the phase space over a finite time interval. The study of the problem is based on methods developed in the theory of positional differential games. Within the framework of this theory, an approach to constructing approximate solutions to the approach problem is presented.
Keywords: control, target set, conflict-controlled system, differential inclusion, approach problem, minimax $u$-stable bridge.
Mots-clés : solution set
@article{IIMI_2022_60_a6,
     author = {V. N. Ushakov and A. V. Ushakov},
     title = {On the approach problem for a control system on a finite time interval},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {111--154},
     publisher = {mathdoc},
     volume = {60},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. V. Ushakov
TI  - On the approach problem for a control system on a finite time interval
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 111
EP  - 154
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/
LA  - ru
ID  - IIMI_2022_60_a6
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. V. Ushakov
%T On the approach problem for a control system on a finite time interval
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 111-154
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/
%G ru
%F IIMI_2022_60_a6
V. N. Ushakov; A. V. Ushakov. On the approach problem for a control system on a finite time interval. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 111-154. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/