On the approach problem for a control system on a finite time interval
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 111-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

A conflict-controlled system in a finite-dimensional Euclidean space is considered. We study the game problem of approaching the system to the goal set in the phase space over a finite time interval. The study of the problem is based on methods developed in the theory of positional differential games. Within the framework of this theory, an approach to constructing approximate solutions to the approach problem is presented.
Keywords: control, target set, conflict-controlled system, differential inclusion, approach problem, minimax $u$-stable bridge.
Mots-clés : solution set
@article{IIMI_2022_60_a6,
     author = {V. N. Ushakov and A. V. Ushakov},
     title = {On the approach problem for a control system on a finite time interval},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {111--154},
     publisher = {mathdoc},
     volume = {60},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. V. Ushakov
TI  - On the approach problem for a control system on a finite time interval
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 111
EP  - 154
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/
LA  - ru
ID  - IIMI_2022_60_a6
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. V. Ushakov
%T On the approach problem for a control system on a finite time interval
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 111-154
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/
%G ru
%F IIMI_2022_60_a6
V. N. Ushakov; A. V. Ushakov. On the approach problem for a control system on a finite time interval. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 111-154. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a6/

[1] Pontryagin L. S., “Linear differential games. I”, Sov. Math., Dokl., 8 (1967), 769–771 | MR | Zbl

[2] Pontryagin L. S., “Linear differential games. II”, Sov. Math., Dokl., 8 (1967), 910–912 | MR | Zbl

[3] Nikol'skii M. S., “On the alternating integral of Pontrjagin”, Mathematics of the USSR — Sbornik, 44:1 (1983), 125–132 | DOI | MR | Zbl | Zbl

[4] Nikol'skii M. S., “On the lower alternating integral of Pontryagin in linear differential games of pursuit”, Mathematics of the USSR — Sbornik, 56:1 (1987), 33–47 | DOI | MR | MR | Zbl | Zbl

[5] Polovinkin E. S., “Stability of a terminal set and optimality of pursuit time in differential games”, Differ. Uravn., 20:3 (1984), 433–446 (in Russian) | MR | Zbl

[6] Azamov A., “Semistability and duality in the theory of the Pontryagin alternating integral”, Sov. Math., Dokl., 37:2 (1988), 355–359 | MR | Zbl

[7] Krasovskii N. N., Game problems on the encounter of motions, Nauka, M., 1970

[8] Krasovskii N. N., Subbotin A. I., “On the structure of differential games”, Sov. Math., Dokl., 11 (1970), 143–147 | MR | Zbl

[9] Krasovskii N. N., Subbotin A. I., Positional differential games, Nauka, M., 1974 | MR

[10] Osipov Yu. S., “Minimax absorption in difference-differential games”, Sov. Math., Dokl., 13 (1972), 337–341 | MR | Zbl

[11] Krasovskii N. N., Subbotin A. I., Ushakov V. N., “A minimax differential game”, Sov. Math., Dokl., 13 (1972), 1200–1204 | MR | Zbl

[12] Kurzhanskij A. B., “Pontryagin's alternated integral in the theory of control synthesis”, Proc. Steklov Inst. Math., 224 (1999), 212–225 | MR | Zbl

[13] Subbotin A. I., Chentsov A. G., Optimization of the guarantee in control problems, Nauka, M., 1981 | MR

[14] Kryazhimskii A. V., Osipov Yu. S., “On an algorithmic criterion of the solvability of game problems for linear controlled systems”, Proceedings of the Steklov Institute of Mathematics, 2000, suppl. 1, 154–162 | MR | Zbl

[15] Krasovskij N. N., “On the problem of unifying differential games”, Sov. Math., Dokl., 17 (1976), 269–273 | MR | Zbl

[16] Subbotin A. I., Subbotina N. N., “Necessary and sufficient conditions for a piecewise smooth value of a differential game”, Sov. Math., Dokl., 19 (1978), 1447–1451 | MR | Zbl

[17] Ushakov V. N., “On the problem of constructing stable bridges in a differential game of approach and avoidance”, Eng. Cybernetics, 18:4 (1980), 16–23 | MR | Zbl

[18] Taras'yev A. M., Ushakov V. N., Khripunov A. P., “On a computational algorithm for solving game control problems”, Journal of Applied Mathematics and Mechanics, 51:2 (1987), 167–172 | DOI | MR | Zbl

[19] Botkin N. D., Patsko V. S., “A universal strategy in a differential game with a fixed ending moment”, Problemy Upravleniya i Teorii Informatsii, 11:6 (1982), 419–432 (in Russian) | MR | Zbl

[20] Patsko V. S., Turova V. L., The killer–driver game: History and modern research, Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2009

[21] Lukoyanov N. Yu., Gomoyunov M. I., “Differential games on minmax of the positional quality index”, Dynamic Games and Applications, 9:3 (2019), 780–799 | DOI | MR | Zbl

[22] Grigor'eva S. V., Pakhotinskikh V. Yu., Uspenskii A. A., Ushakov V. N., “Construction of solutions in certain differential games with phase constraints”, Sbornik: Mathematics, 196:4 (2005), 513–539 | DOI | DOI | MR | Zbl

[23] Ushakov V. N., Ukhobotov V. I., Lipin A. E., “An addition to the definition of a stable bridge and an approximating system of sets in differential games”, Proceedings of the Steklov Institute of Mathematics, 304 (2019), 268–280 | DOI | DOI | MR | Zbl

[24] Ershov A. A., Ushakov A. V., Ushakov V. N., “Two game-theoretic problems of approach”, Sbornik: Mathematics, 212:9 (2021), 1228–1260 | DOI | DOI | MR | Zbl

[25] Subbotin A. I., Minimax inequalities and Hamilton–Jacobi equations, Nauka, M., 1991

[26] Chernous'ko F. L., Melikyan A. A., Game problems of control and search, Nauka, M., 1978 | MR

[27] Chernous'ko F. L., “Ellipsoidal approximation of attainability sets of a linear system with indeterminate matrix”, Journal of Applied Mathematics and Mechanics, 60:6 (1996), 921–931 | DOI | MR | Zbl

[28] Petrosyan L. A., “Differential games with incomplete information”, Sov. Math., Dokl., 11 (1970), 1524–1527 | MR | Zbl

[29] Petrosyan L. A., Zenkevich N. A., “Principles of dynamic stability”, Upravlenie Bol'shimi Sistemami, 2009, no. 26-1, 100–120 (in Russian)

[30] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Pursuit differential games with state constraints”, SIAM Journal on Control and Optimization, 39:5 (2000), 1615–1632 | DOI | MR

[31] Bardi M., Falcone M., Soravia P., “Numerical methods for pursuit–evasion games via viscosity solutions”, Stochastic and differential games, v. 4, Birkhäuser, Boston, 1999, 105–175 | DOI | MR | Zbl