New generalized integral inequalities via $(h,m)$-convex modified functions
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we establish several inequalities for $(h,m)$-convex maps, related to weighted integrals, used in previous works. Throughout the work, we show that our results generalize several of the integral inequalities known from the literature.
Keywords: Hermite–Hadamard inequality, Hölder inequality, power mean inequality, weighted integrals, $(m,h)$-convex functions.
@article{IIMI_2022_60_a0,
     author = {B. Bayraktar and J. E. N\'apoles Vald\'es},
     title = {New generalized integral inequalities via $(h,m)$-convex modified functions},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {60},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_60_a0/}
}
TY  - JOUR
AU  - B. Bayraktar
AU  - J. E. Nápoles Valdés
TI  - New generalized integral inequalities via $(h,m)$-convex modified functions
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 3
EP  - 15
VL  - 60
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_60_a0/
LA  - ru
ID  - IIMI_2022_60_a0
ER  - 
%0 Journal Article
%A B. Bayraktar
%A J. E. Nápoles Valdés
%T New generalized integral inequalities via $(h,m)$-convex modified functions
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 3-15
%V 60
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_60_a0/
%G ru
%F IIMI_2022_60_a0
B. Bayraktar; J. E. Nápoles Valdés. New generalized integral inequalities via $(h,m)$-convex modified functions. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 60 (2022), pp. 3-15. http://geodesic.mathdoc.fr/item/IIMI_2022_60_a0/

[1] Akdemir A. O., Butt S. I., Nadeem M., Ragusa M. A., “New general variants of Chebyshev type inequalities via generalized fractional integral operators”, Mathematics, 9:2 (2021), 122 | DOI | MR

[2] Akkurt A., Yildirim M. E., Yildirim H., “On some integral inequalities for $(k,h)$-Riemann–Liouville fractional integral”, New Trends in Mathematical Science, 4:2 (2016), 138–146 | DOI | MR

[3] Aljaaidi T. A., Pachpatte D., “New generalization of reverse Minkowski's inequality for fractional integral”, Advances in the Theory of Nonlinear Analysis and its Applications, 5:1 (2021), 72–81 | DOI | MR

[4] Bayraktar B., Attaev A. Kh., Kudaev V. Ch., “Some generalized Hadamard type inequalities via fractional integrals”, Russian Mathematics, 65:2 (2021), 1–14 | DOI | DOI | MR | Zbl

[5] Bayraktar B., Emin {Ö}zdemir M., “Generalization of Hadamard-type trapezoid inequalities for fractional integral operators”, Ufa Mathematical Journal, 13:1 (2021), 119–130 | DOI | MR | Zbl

[6] Bessenyei M., Páles Z., “On generalized higher-order convexity and Hermite–Hadamard-type inequalities”, Acta Scientiarum Mathematicarum (Szeged), 70:1–2 (2004), 13–24 | MR | Zbl

[7] Breckner W. W., “Stetigkeitsaussagen f{ü}r eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen R{ä}umen”, Publications de l'Institut Mathématique. Nouvelle série, 23(37), no. 43, 1978, 13–20 (in German) http://eudml.org/doc/257486 | MR | Zbl

[8] Bruckner A. M., Ostrow E., “Some function classes related to the class of convex functions”, Pacific Journal of Mathematics, 12:4 (1962), 1203–1215 | DOI | MR | Zbl

[9] Butt S. I., Bayraktar B., Umar M., “Several new integral inequalities via $k$-Riemann–Liouville fractional integrals operators”, Problemy Analiza — Issues of Analysis, 10(28):1 (2021), 3–22 | DOI | MR | Zbl

[10] Díaz R., Pariguan E., “On hypergeometric functions and Pochhammer $k$-symbol”, Divulgaciones Matemáticas, 15:2 (2007), 179–192 | MR | Zbl

[11] Dragomir S. S., Agarwal R. P., “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula”, Applied Mathematics Letters, 11:5 (1998), 91–95 | DOI | MR | Zbl

[12] Du T., Awan M. U., Kashuri A., Zhao S. S., “Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m,h)$-preinvexity”, Applicable Analysis, 100:3 (2021), 642–662 | DOI | MR | Zbl

[13] Farid G., Rehman A. U., Ain Q. U., “$k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions”, Computational Methods for Differential Equations, 8:1 (2020), 119–140 | MR | Zbl

[14] Farid G., Rehman A. U., Zahra M., “On Hadamard-type inequalities for $k$-fractional integrals”, Nonlinear Functional Analysis and Applications, 21:3 (2016), 463–478 http://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/902/832 | Zbl

[15] Hudzik H., Maligranda L., “Some remarks on $s$-convex functions”, Aequationes Mathematicae, 48:1 (1994), 100–111 | DOI | MR | Zbl

[16] {İ}lhan E., “Analysis of the spread of Hookworm infection with Caputo–Fabrizio fractional derivative”, Turkish Journal of Science, 7:1 (2022), 43–52

[17] Jarad F., Abdeljawad T., Shah K., “On the weighted fractional operators of a function with respect to another function”, Fractals, 28:8 (2020), 2040011 | DOI | Zbl

[18] Jarad F., U{ğ}urlu E., Abdeljawad T., Baleanu D., “On a new class of fractional operators”, Advances in Difference Equations, 2017:1 (2017), 247 | DOI | MR | Zbl

[19] Khan T. U., Khan M. A., “Generalized conformable fractional operators”, Journal of Computational and Applied Mathematics, 346 (2019), 378–389 | DOI | MR | Zbl

[20] K{\i}rmacı U. S., Klaričić Bakula M., {Ö}zdemir M. E., Pečarić J., “Hadamard-type inequalities for $s$-convex functions”, Applied Mathematics and Computation, 193:1 (2007), 26–35 | DOI | MR

[21] K{\i}z{\i}l Ş., Ardı{ç} M. A., “Inequalities for strongly convex functions via Atangana–Baleanu integral operators”, Turkish Journal of Science, 6:2 (2021), 96–109

[22] Koca {İ}., Ak{ç}etin E., Yaprakdal P., “Numerical approximation for the spread of SIQR model with Caputo fractional order derivative”, Turkish Journal of Science, 5:2 (2020), 124–139 | MR

[23] Mihesan V. G., A generalization of convexity, Seminar on functional equations, approximation and convexity, Cluj-Napoca, Romania, 1993

[24] Mubeen S., Habibullah G. M., “$k$-fractional integrals and application”, International Journal of Contemporary Mathematical Sciences, 7:2 (2012), 89–94 | MR | Zbl

[25] Nápoles Valdés J. E., Bayraktar B., Butt S. I., “New integral inequalities of Hermite–Hadamard type in a generalized context”, Punjab University Journal Of Mathematics, 53:11 (2021), 765–777 | DOI | MR

[26] Nápoles Valdés J. E., Bayraktar B., “On the generalized inequalities of the Hermite–Hadamard type”, Filomat, 35:14 (2021), 4917–4924 | DOI | MR

[27] Nápoles Valdés J. E., Rabossi F., Samaniego A. D., Convex functions: Ariadne's thread or Charlotte's Spiderweb?, Advanced Mathematical Models and Applications, 5:2 (2020), 176–191

[28] {Ö}zdemir M. E., Akdemir A. O., Set E., “On $(h-m)$-convexity and Hadamard-type inequalities”, Transylvanian Journal Of Mathematics And Mechanics, 8:1 (2016), 51–58 | MR

[29] {Ö}zdemir M. E., Dragomir S. S., Yildiz {Ç}., “The Hadamard inequality for convex function via fractional integrals”, Acta Mathematica Scientia B, 33:5 (2013), 1293–1299 | DOI | MR

[30] Park J., “Generalization of Ostrowski-type inequalities for differentiable real $(s,m)$-convex mappings”, Far East Journal of Mathematical Sciences, 49:2 (2011), 157–171 | MR | Zbl

[31] Pearce C. E. M., Pečarić J., “Inequalities for differentiable mappings with application to special means and quadrature formulæ”, Applied Mathematics Letters, 13:2 (2000), 51–55 | DOI | MR | Zbl

[32] Rainville E. D., Special functions, Macmillan, New York, 1960 | MR | Zbl

[33] Sahoo S. K., Ahmad H., Tariq M., Kodamasingh B., Aydi H., de la Sen M., “Hermite–Hadamard type inequalities involving $k$-fractional operator for $(\bar{h},m)$-convex functions”, Symmetry, 13:9 (2021), 1686 | DOI

[34] Sar{\i}kaya M. Z., Ertu{ğ}ral F., “On the generalized Hermite–Hadamard inequalities”, Annals of the University of Craiova. Mathematics and Computer Science Series, 47:1 (2020), 193–213 | MR | Zbl

[35] Sar{\i}kaya M. Z., Set E., Yald{\i}z H., Başak N., “Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities”, Mathematical and Computer Modelling, 57:9–10 (2013), 2403–2407 | DOI | MR | Zbl

[36] Toader G., “Some generalizations of the convexity”, Proceedings of the Colloquium on Approximation and Optimization, University Cluj-Napoca, Cluj-Napoca, 1985, 329–338 | MR

[37] Wu S., Iqbal S., Aamir M., Samraiz M., Younus A., “On some Hermite–Hadamard inequalities involving $k$-fractional operators”, Journal of Inequalities and Applications, 2021 (2021), 32 | DOI | MR | Zbl

[38] Xi B.-Y., Gao D.-D., Qi F., “Integral inequalities of Hermite–Hadamard type for $(\alpha,s)$-convex and $(\alpha,s,m)$-convex functions”, Italian Journal Of Pure And Applied Mathematics, 2020, no. 44, 499–510

[39] Xi B.-Y., Qi F., “Inequalities of Hermite–Hadamard type for extended $s$-convex functions and applications to means”, Journal of Nonlinear and Convex Analysis, 16:5 (2015), 873–890 | MR | Zbl

[40] Yildiz {Ç}., {Ö}zdemir M. E., {Ö}nalan H. K., “Fractional integral inequalities via $s$-convex functions”, Turkish Journal of Analysis and Number Theory, 5:1 (2017), 18–22