Pursuit--evasion differential games with Gr-constraints on controls
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 67-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a pursuit–evasion differential game is considered when controls of the players are subject to differential constraints in the form of Grönwall's integral inequality. The strategy of parallel pursuit (briefly, $\Pi$-strategy) was introduced and used by L. A. Petrosyan to solve simple pursuit problems under phase constraints on the states of the players in the case when control functions of both players are chosen from the class $L_\infty$. In the present work, the $\Pi$-strategy is constructed for a simple pursuit problem in the cases when control functions of both players are chosen from different classes of the Grönwall type constraints, and sufficient conditions of capture and optimal capture time are found in these cases. To solve the evasion problem, we suggest a control function for the Evader and find sufficient conditions of evasion. In addition, an attainability domain of the players is constructed and its conditions of embedding in respect to time are given. Results of this work continue and extend the works of R. Isaacs, L. A. Petrosyan, B. N. Pshenichnyi, A. A. Chirii, A. A. Azamov and other researchers, including the authors.
Keywords: differential game, Grönwall's inequality, pursuit, optimal strategy, capture time.
Mots-clés : evasion
@article{IIMI_2022_59_a5,
     author = {B. T. Samatov and A. Kh. Akbarov and B. I. Zhuraev},
     title = {Pursuit--evasion differential games with {Gr-constraints} on controls},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {59},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2022_59_a5/}
}
TY  - JOUR
AU  - B. T. Samatov
AU  - A. Kh. Akbarov
AU  - B. I. Zhuraev
TI  - Pursuit--evasion differential games with Gr-constraints on controls
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2022
SP  - 67
EP  - 84
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2022_59_a5/
LA  - en
ID  - IIMI_2022_59_a5
ER  - 
%0 Journal Article
%A B. T. Samatov
%A A. Kh. Akbarov
%A B. I. Zhuraev
%T Pursuit--evasion differential games with Gr-constraints on controls
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2022
%P 67-84
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2022_59_a5/
%G en
%F IIMI_2022_59_a5
B. T. Samatov; A. Kh. Akbarov; B. I. Zhuraev. Pursuit--evasion differential games with Gr-constraints on controls. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 59 (2022), pp. 67-84. http://geodesic.mathdoc.fr/item/IIMI_2022_59_a5/

[1] Pontryagin L. S., Selected works, MAKS Press, M., 2004

[2] Krasovskii N. N., Subbotin A. I., Game-theoretical control problems, Springer, New York, 2011 | MR

[3] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | MR | Zbl

[4] Petrosjan L. A., Differential games of pursuit, World Scientific Publishing, Singapore, 1993 | DOI | MR | Zbl

[5] Pshenichnyi B. N., “Simple pursuit by several objects”, Cybernetics, 12:3 (1976), 484–485 | DOI | MR

[6] Pshenichnyi B. N., Chikrii A. A., “An efficient method of solving differential games with many pursuers”, Sov. Math., Dokl., 23 (1981), 104–109 | MR | Zbl

[7] Azamov A., “On the quality problem for simple pursuit games with constraint”, Serdica Bulgariacae Mathematicae Publicationes, 12:1 (1986), 38–43 (in Russian) | MR | Zbl

[8] Azamov A. A., Samatov B. T., “The $\Pi$-strategy: analogies and applications”, Contributions to Game Theory and Management, 4 (2011), 33–47 | MR

[9] Petrov N. N., “Conflict controlled processes by interaction of controlled object groups”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2005, no. 4(34), 81–102 (in Russian)

[10] Petrov N. N., “Simple group pursuit subject to phase constraints and data delay”, Journal of Computer and Systems Sciences International, 57:1 (2018), 37–42 | DOI | MR | Zbl

[11] Petrov N. N., Narmanov A. Ya., “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 28:2 (2018), 193–198 (in Russian) | DOI | MR | Zbl

[12] Blagodatskikh A. I., Petrov N. N., Conflict interaction of groups of controlled objects, Udmurt State University, Izhevsk, 2009

[13] Chikrii A. A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[14] Grigorenko N. L., Mathematical methods for control of several dynamic processes, Moscow State University, M., 1990

[15] Petrosyan L. A., “A family of differential games of survival into the space $\mathbb{R}^n$”, Sov. Math., Dokl., 1965, no. 6, 377–380 | MR | MR | Zbl

[16] Petrosyan L. A., “Pursuit games with “a survival zone””, Vestnik Leningradskogo Universiteta. Matematika, Mekhanika, Astronomiya, 3:13 (1967), 76–85 (in Russian) | Zbl

[17] Petrosyan L. A., Dutkevich V. G., “Games with “a survival zone”. Occation $l$-catch”, Vestnik Leningradskogo Universiteta. Matematika, Mekhanika, Astronomiya, 19:4 (1969), 31–42 (in Russian)

[18] Petrosyan L. A., Rikhsiev B. B., Pursuit on the plane, Nauka, M., 1991

[19] Petrosyan L. A., Mazalov V. V., Game theory and applications, v. 1, Nova Science Publishers, New York, 1996 http://hdl.handle.net/11701/1786 | MR

[20] Samatov B. T., “On a pursuit–evasion problem under a linear change of the pursuer resource”, Siberian Advances in Mathematics, 23:4 (2013), 294–302 | DOI | MR | Zbl

[21] Samatov B. T., “The pursuit–evasion problem under integral-geometric constraints on pursuer controls”, Automation and Remote Control, 74:7 (2013), 1072–1081 | DOI | MR | Zbl

[22] Samatov B. T., “Problems of group pursuit with integral constraints on controls of the players. I”, Cybernetics and Systems Analysis, 49:5 (2013), 756–767 | DOI | MR | Zbl

[23] Samatov B. T., “Problems of group pursuit with integral constraints on controls of the players. II”, Cybernetics and Systems Analysis, 49:6 (2013), 907–921 | DOI | MR | Zbl

[24] Samatov B. T., “The $\Pi$-strategy in a differential game with linear control constraints”, Journal of Applied Mathematics and Mechanics, 78:3 (2014), 258–263 | DOI | MR | Zbl

[25] Dar'in A. N., Kurzhanskii A. B., “Control under indeterminacy and double constraints”, Differential Equations, 39:11 (2003), 1554–1567 | DOI | MR

[26] Kornev D. V., Lukoyanov N. Yu., “On a minimax control problem for a positional functional under geometric and integral constraints on control actions”, Proceedings of the Steklov Institute of Mathematics, 293, suppl. 1 (2016), 85–100 | DOI | MR

[27] Satimov N. Yu., Methods of solving of pursuit problem in differential games, National University of Uzbekistan, Tashkent, 2003

[28] Ibragimov G., Ferrara M., Ruziboev M., Pansera B. A., “Linear evasion differential game of one evader and several pursuers with integral constraints”, International Journal of Game Theory, 50:3 (2021), 729–750 | DOI | MR | Zbl

[29] Ibragimov G. I., “The optimal pursuit problem reduced to an infinite system of differential equations”, Journal of Applied Mathematics and Mechanics, 77:5 (2013), 470–476 | DOI | MR | Zbl

[30] Aubin J.-P., Cellina A., Differential inclusions. Set-valued maps and viability theory, Springer, Berlin–Heidelberg, 1984 | DOI | MR | Zbl

[31] Pang J.-Sh., Stewart D. E., “Differential variational inequalities”, Mathematical Programming, 113:2 (2008), 345–424 | DOI | MR | Zbl

[32] Yuldashev T. K., “Nonlinear optimal control of thermal processes in a nonlinear inverse problem”, Lobachevskii Journal of Mathematics, 41:1 (2020), 124–136 | DOI | MR | Zbl

[33] Vassilina G. K., “Optimal control problem of stochastic systems”, Lobachevskii Journal of Mathematics, 42:3 (2021), 641–648 | DOI | MR | Zbl

[34] Ushakov V. N., Ershov A. A., Ushakov A. V., Kuvshinov O. A., “Control system depending on a parameter”, Ural Mathematical Journal, 7:1 (2021), 120–159 | DOI | MR | Zbl

[35] Filippova T. F., “Estimates of reachable sets for systems with impulse control, uncertainty, and nonlinearity”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Ser. Matematika, 19 (2017), 205–216 (in Russian) | DOI | MR | Zbl

[36] Munts N. V., Kumkov S. S., “Numerical method for solving time-optimal differential games with lifeline”, Matematicheskaya Teoriya Igr i Ee Prilozheniya, 10:3 (2018), 48–75 (in Russian) | MR

[37] Munts N. V., Kumkov S. S., “On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline”, Proceedings of the Steklov Institute of Mathematics, 305, suppl. 1 (2019), 125–139 | DOI | DOI | MR

[38] Bannikov A. S., “Some non-stationary problems of group pursuit”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2013, no. 1(41), 3–46 (in Russian) | Zbl

[39] Bannikov A. S., Petrov N. N., “On a nonstationary problem of group pursuit”, Proceedings of the Steklov Institute of Mathematics, 271, suppl. 1 (2010), 41–52 (in Russian) | DOI | MR | Zbl

[40] Samatov B. T., Ibragimov G. I., Hodjibayeva I. V., “Pursuit–evasion differential games with the Gr{ö}nwall type constraints on controls”, Ural Mathematical Journal, 6:2 (2020), 95–107 | DOI | MR | Zbl

[41] Gr{ö}nwall T. H., “Note on the derivatives with respect to a parameter of the solutions of a system of differential equations”, Annals of Mathematics. Second Series, 20:4 (1919), 292–296 | DOI | MR

[42] Blagodatskikh V. I., Introduction to optimal control (linear theory), Vysshaya Shkola, M., 2001