On problem of controlling the process of cleaning a pond from impurity
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 181-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of controlling the process of cleaning a pond from impurity using the river flowing from it is considered. A controlled variable is the concentration of impurity entering the river from the pond. The spread of impurity in the river is described by the convection-diffusion equation. This equation includes a term that is determined by other sources of impurity entering the river. The exact value of this term is unknown. Only the boundaries of its change are set. An indicator of the control quality is the value of the linear combination of the concentration of the impurity in the river at a given moment of time and the remaining amount of the mass of the impurity at that moment in the pond. The goal of the control is to bring the value of this indicator within the specified interval.
Keywords: control, uncertainty
Mots-clés : convection-diffusion equation.
@article{IIMI_2021_57_a8,
     author = {V. I. Ukhobotov and I. V. Izmest'ev},
     title = {On problem of controlling the process of cleaning a pond from impurity},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {181--189},
     publisher = {mathdoc},
     volume = {57},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a8/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
AU  - I. V. Izmest'ev
TI  - On problem of controlling the process of cleaning a pond from impurity
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 181
EP  - 189
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a8/
LA  - ru
ID  - IIMI_2021_57_a8
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%A I. V. Izmest'ev
%T On problem of controlling the process of cleaning a pond from impurity
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 181-189
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a8/
%G ru
%F IIMI_2021_57_a8
V. I. Ukhobotov; I. V. Izmest'ev. On problem of controlling the process of cleaning a pond from impurity. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 181-189. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a8/

[1] B. Pimpunchat, W. L. Sweatman, G. C. Wake, W. Triampo, A. Parshotam, “A mathematical model for pollution in a river and its remediation by aeration”, Applied Mathematics Letters, 22:3 (2009), 304–308 | DOI | Zbl

[2] G. Guo, G. Cheng, “Mathematical modelling and application for simulation of water pollution accidents”, Process Safety and Environmental Protection, 127 (2019), 189–196 | DOI

[3] P. Othata, N. Pochai, “A one-dimensional mathematical simulation to salinity control in a river with a barrage dam using an unconditionally stable explicit finite difference method”, Advances in Difference Equations, 2019, 203 | DOI | MR | Zbl

[4] A. Sedakov, H. Qiao, S. Wang, “A model of river pollution as a dynamic game with network externalities”, European Journal of Operational Research, 290:3 (2020), 1136–1153 | DOI | MR

[5] Yu. S. Osipov, “Pozitsionnoe upravlenie v parabolicheskikh sistemakh”, Prikladnaya matematika i mekhanika, 41:2 (1977), 195–201 | MR

[6] A. I. Korotkii, Yu. S. Osipov, “Approksimatsiya v zadachakh pozitsionnogo upravleniya parabolicheskimi sistemami”, Prikladnaya matematika i mekhanika, 42:4 (1978), 599–605 | MR

[7] A. I. Egorov, Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[8] J. Liu, G. Zheng, M. M. Ali, “Stability analysis of the anti-stable heat equation with uncertain disturbance on the boundary”, Journal of Mathematical Analysis and Applications, 428:2 (2015), 1193–1201 | DOI | MR | Zbl

[9] J. Dai, B. Ren, “UDE-based robust boundary control of heat equation with unknown input disturbance”, IFAC-PapersOnLine, 50:1 (2017), 11403–11408 | DOI

[10] V. I. Ukhobotov, I. V. Izmest'ev, “The problem of controlling the process of heating the rod in the presence of disturbance and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 739–742 | DOI

[11] V. I. Ukhobotov, I. V. Izmestev, “Zadacha upravleniya protsessom nagreva sterzhnya s neizvestnymi temperaturoi na pravom kontse i plotnostyu istochnika tepla”, Trudy Instituta matematiki i mekhaniki UrO RAN, 25, no. 1, 2019, 297–305 | DOI

[12] N. N. Krasovskii, Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985

[13] L. S. Pontryagin, “Lineinye differentsialnye igry presledovaniya”, Matematicheskii sbornik, 112 (154):3 (7) (1980), 307–330 | MR | Zbl

[14] V. I. Ukhobotov, Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, Chelyabinskii gosudarstvennyi universitet, Chelyabinsk, 2005

[15] V. I. Ukhobotov, “Odnotipnye differentsialnye igry s vypukloi tselyu”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 196–204

[16] L. Gallakher, Dzh. D. Khobbs, “Rasprostranenie zagryaznenii v estuarii”, Matematicheskie modeli kontrolya zagryaznenii vody, Mir, M., 1981, 229–243

[17] Sh. Kh. Zaripov, R. F. Mardanov, A. K. Gilfanov, V. F. Sharafutdinov, T. V. Nikonenkova, Matematicheskie modeli perenosa zagryaznenii v okruzhayuschei srede, Kazan. un-t, Kazan, 2018

[18] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR