Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_57_a3, author = {V. I. Zhukovskii and Yu. S. Mukhina and V. E. Romanova}, title = {A differential game of $n$ persons in which there is {Pareto} equilibrium of objections and counterobjections and no {Nash} equilibrium}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {104--127}, publisher = {mathdoc}, volume = {57}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/} }
TY - JOUR AU - V. I. Zhukovskii AU - Yu. S. Mukhina AU - V. E. Romanova TI - A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 104 EP - 127 VL - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/ LA - ru ID - IIMI_2021_57_a3 ER -
%0 Journal Article %A V. I. Zhukovskii %A Yu. S. Mukhina %A V. E. Romanova %T A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 104-127 %V 57 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/ %G ru %F IIMI_2021_57_a3
V. I. Zhukovskii; Yu. S. Mukhina; V. E. Romanova. A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 104-127. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/
[1] J. F. Nash, “Equilibrium points in n-person games”, Proc. Nat. Academ. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl
[2] J. Nash, “Non-cooperative games”, Annals of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl
[3] V. V. Podinovskii, V. D. Nogin, Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007
[4] J. Case, “A class of games having Pareto optimal Nash equilibria”, Journal of Optimization Theory and Applications, 13:3 (1974), 379–385 | DOI | MR | Zbl
[5] V. I. Zhukovskii, A. A. Chikrii, “Differentsialnye uravneniya”, Lineino-kvadratichnye differentsialnye igry, 2017, Yurait, M.
[6] R. D. Lyus, Kh. Raifa, Igry i resheniya, Izd-vo inostrannoi literatury, M., 1961
[7] G. Ouen, Teoriya igr, Mip, M., 1971
[8] V. I. Zhukovskii, N. T. Tynyanskii, Ravnovesnye upravleniya mnogokriterialnykh dinamicheskikh zadach, Izd-vo MGU, M., 1984
[9] E. I. Vilkas, “Formalizatsiya problemy vybora teoretiko-igrovogo kriteriya optimalnosti”, Sb. statei, Matematicheskie metody v sotsialnykh naukakh, 2, In-t matematiki i kibernetiki AN Lit. SSR, Vilnyus, 1972, 9–55
[10] E. I. Vilkas, E. Z. Maiminas, Resheniya: teoriya, informatsiya, modelirovanie, Radio i svyaz, M., 1981 | MR
[11] E. R. Smolyakov, Teoriya konfliktnykh ravnovesii, URSS, M., 2005
[12] E. M. Vaisbord, “O koalitsionnykh differentsialnykh igrakh”, Differentsialnye uravneniya, 10:4 (1974), 613–623 | MR | Zbl
[13] V. I. Zhukovskii, “Vvedenie v differentsialnye igry pri neopredelennosti”, Ravnovesie ugroz i kontrugroz, 2010, Krasand, M.
[14] V. I. Zhukovskii, K. N. Kudryavtsev, S. V. Samsonov, M. I. Vysokos, Yu. A. Belskikh, “Klass differentsialnykh igr, v kotorykh otsutstvuet ravnovesie po Neshu, no suschestvuet ravnovesie ugroz i kontrugroz”, Vestnik Yuzhno-Uralskogo universiteta. Ser. Matematika. Mekhanika. Fizika, 10:2 (2018), 5–21 | DOI | Zbl
[15] S. V. Biltchev, “Z-equilibrium in a differential game described by a parabolic system”, Many Players Differential Game, Technical Univ., Rousse, Bulgaria, 1984, 47–52
[16] V. I. Zhukovskii, “Some problems of non-antagonistic differential games”, Mathematical Method in Operation Research, Academy of Sciences, Sofia, Bulgaria, 1985, 103–195
[17] D. T. Dochev, N. V. Stojanov, “Existence of Z-equilibrium in a differential game with delay”, Many Players Differential Game, Technical Univ, Rousse, Bulgaria, 1984, 64–72
[18] S. D. Gaidov, “Z-equilibrium in stochastic differential game”, Many Players Differential Game, Technical Univ, Rousse, Bulgaria, 1984, 53–63 | MR
[19] A. V. Chernov, “O differentsialnykh igrakh v banakhovom prostranstve na fiksirovannoi tsepochke”, Matematicheskaya teoriya igr i ee prilozheniya, 12:3 (2020), 89–118 | Zbl
[20] S. A. Tersian, “On the Z-equilibrium points in a differential game”, Many Players Differential Game, Technical Univ, Rousse, Bulgaria, 1984, 106–111
[21] A. N. Rettieva, “Cooperation in dynamic multicriteria games with random horizons”, Journal of Global Optimization, 76:3 (2018), 455–470 | DOI | MR
[22] A. N. Rettieva, “Dynamic multicriteria games with finite horizon”, Mathematics, 6:9 (2018), 156 | DOI | Zbl
[23] A. N. Rettieva, “Equilibria in dynamic multicriteria games”, International Game Theory Review, 19:1 (2017), 1750002 | DOI | MR | Zbl
[24] V. V. Mazalov, A. N. Rettieva, K. E. Avrachenkov, “Linear-quadratic discrete-time dynamic potential games”, Automation and Remote Control, 78:8 (2017), 1537–1544 | DOI | MR | Zbl
[25] “Sur les racines d'une equation fondamentale: Extrait d'une lettre de M. A. Hirsch à M. I. Bendixson”, Acta Math., 25 (1902), 367–370 | DOI | MR | Zbl
[26] W. V. Parker, “The characteristic roots a matrix”, Duke Mathematical Journal, 3:3 (1937), 484–487 | DOI | MR
[27] M. Parodi, Lokalizatsiya kharakteristicheskikh chisel matrits i i ee primeneniya, Izd-vo inostrannoi literatury, M., 1960
[28] E. M. Vaisbord, V. I. Zhukovskii, Vvedenie v differentsialnye igry neskolkikh lits i ikh prilozheniya, Sovetskoe radio, M., 1980 | MR
[29] V. I. Zhukovskii, M. E. Salukvadze, The vector-valued maximin, Academic Press, New York, 1994 | DOI | MR | Zbl
[30] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1984 | MR
[31] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004 | MR