A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 104-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear-quadratic positional differential game of $N$ persons is considered. The solution of a game in the form of Nash equilibrium has become widespread in the theory of noncooperative differential games. However, Nash equilibrium can be internally and externally unstable, which is a negative in its practical use. The consequences of such instability could be avoided by using Pareto maximality in a Nash equilibrium situation. But such a coincidence is rather an exotic phenomenon (at least we are aware of only three cases of such coincidence). For this reason, it is proposed to consider the equilibrium of objections and counterobjections. This article establishes the coefficient criteria under which in a differential positional linear-quadratic game of $N$ persons there is Pareto equilibrium of objections and counterobjections and at the same time no Nash equilibrium situation; an explicit form of the solution of the game is obtained.
Keywords: differential noncooperative games, Nash equilibrium situation, equilibrium of objections and counterobjections, Pareto efficiency.
@article{IIMI_2021_57_a3,
     author = {V. I. Zhukovskii and Yu. S. Mukhina and V. E. Romanova},
     title = {A differential game of $n$ persons in which there is {Pareto} equilibrium of objections and counterobjections and no {Nash} equilibrium},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {104--127},
     publisher = {mathdoc},
     volume = {57},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/}
}
TY  - JOUR
AU  - V. I. Zhukovskii
AU  - Yu. S. Mukhina
AU  - V. E. Romanova
TI  - A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2021
SP  - 104
EP  - 127
VL  - 57
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/
LA  - ru
ID  - IIMI_2021_57_a3
ER  - 
%0 Journal Article
%A V. I. Zhukovskii
%A Yu. S. Mukhina
%A V. E. Romanova
%T A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2021
%P 104-127
%V 57
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/
%G ru
%F IIMI_2021_57_a3
V. I. Zhukovskii; Yu. S. Mukhina; V. E. Romanova. A differential game of $n$ persons in which there is Pareto equilibrium of objections and counterobjections and no Nash equilibrium. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 104-127. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a3/

[1] J. F. Nash, “Equilibrium points in n-person games”, Proc. Nat. Academ. Sci. USA, 36:1 (1950), 48–49 | DOI | MR | Zbl

[2] J. Nash, “Non-cooperative games”, Annals of Mathematics, 54:2 (1951), 286–295 | DOI | MR | Zbl

[3] V. V. Podinovskii, V. D. Nogin, Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 2007

[4] J. Case, “A class of games having Pareto optimal Nash equilibria”, Journal of Optimization Theory and Applications, 13:3 (1974), 379–385 | DOI | MR | Zbl

[5] V. I. Zhukovskii, A. A. Chikrii, “Differentsialnye uravneniya”, Lineino-kvadratichnye differentsialnye igry, 2017, Yurait, M.

[6] R. D. Lyus, Kh. Raifa, Igry i resheniya, Izd-vo inostrannoi literatury, M., 1961

[7] G. Ouen, Teoriya igr, Mip, M., 1971

[8] V. I. Zhukovskii, N. T. Tynyanskii, Ravnovesnye upravleniya mnogokriterialnykh dinamicheskikh zadach, Izd-vo MGU, M., 1984

[9] E. I. Vilkas, “Formalizatsiya problemy vybora teoretiko-igrovogo kriteriya optimalnosti”, Sb. statei, Matematicheskie metody v sotsialnykh naukakh, 2, In-t matematiki i kibernetiki AN Lit. SSR, Vilnyus, 1972, 9–55

[10] E. I. Vilkas, E. Z. Maiminas, Resheniya: teoriya, informatsiya, modelirovanie, Radio i svyaz, M., 1981 | MR

[11] E. R. Smolyakov, Teoriya konfliktnykh ravnovesii, URSS, M., 2005

[12] E. M. Vaisbord, “O koalitsionnykh differentsialnykh igrakh”, Differentsialnye uravneniya, 10:4 (1974), 613–623 | MR | Zbl

[13] V. I. Zhukovskii, “Vvedenie v differentsialnye igry pri neopredelennosti”, Ravnovesie ugroz i kontrugroz, 2010, Krasand, M.

[14] V. I. Zhukovskii, K. N. Kudryavtsev, S. V. Samsonov, M. I. Vysokos, Yu. A. Belskikh, “Klass differentsialnykh igr, v kotorykh otsutstvuet ravnovesie po Neshu, no suschestvuet ravnovesie ugroz i kontrugroz”, Vestnik Yuzhno-Uralskogo universiteta. Ser. Matematika. Mekhanika. Fizika, 10:2 (2018), 5–21 | DOI | Zbl

[15] S. V. Biltchev, “Z-equilibrium in a differential game described by a parabolic system”, Many Players Differential Game, Technical Univ., Rousse, Bulgaria, 1984, 47–52

[16] V. I. Zhukovskii, “Some problems of non-antagonistic differential games”, Mathematical Method in Operation Research, Academy of Sciences, Sofia, Bulgaria, 1985, 103–195

[17] D. T. Dochev, N. V. Stojanov, “Existence of Z-equilibrium in a differential game with delay”, Many Players Differential Game, Technical Univ, Rousse, Bulgaria, 1984, 64–72

[18] S. D. Gaidov, “Z-equilibrium in stochastic differential game”, Many Players Differential Game, Technical Univ, Rousse, Bulgaria, 1984, 53–63 | MR

[19] A. V. Chernov, “O differentsialnykh igrakh v banakhovom prostranstve na fiksirovannoi tsepochke”, Matematicheskaya teoriya igr i ee prilozheniya, 12:3 (2020), 89–118 | Zbl

[20] S. A. Tersian, “On the Z-equilibrium points in a differential game”, Many Players Differential Game, Technical Univ, Rousse, Bulgaria, 1984, 106–111

[21] A. N. Rettieva, “Cooperation in dynamic multicriteria games with random horizons”, Journal of Global Optimization, 76:3 (2018), 455–470 | DOI | MR

[22] A. N. Rettieva, “Dynamic multicriteria games with finite horizon”, Mathematics, 6:9 (2018), 156 | DOI | Zbl

[23] A. N. Rettieva, “Equilibria in dynamic multicriteria games”, International Game Theory Review, 19:1 (2017), 1750002 | DOI | MR | Zbl

[24] V. V. Mazalov, A. N. Rettieva, K. E. Avrachenkov, “Linear-quadratic discrete-time dynamic potential games”, Automation and Remote Control, 78:8 (2017), 1537–1544 | DOI | MR | Zbl

[25] “Sur les racines d'une equation fondamentale: Extrait d'une lettre de M. A. Hirsch à M. I. Bendixson”, Acta Math., 25 (1902), 367–370 | DOI | MR | Zbl

[26] W. V. Parker, “The characteristic roots a matrix”, Duke Mathematical Journal, 3:3 (1937), 484–487 | DOI | MR

[27] M. Parodi, Lokalizatsiya kharakteristicheskikh chisel matrits i i ee primeneniya, Izd-vo inostrannoi literatury, M., 1960

[28] E. M. Vaisbord, V. I. Zhukovskii, Vvedenie v differentsialnye igry neskolkikh lits i ikh prilozheniya, Sovetskoe radio, M., 1980 | MR

[29] V. I. Zhukovskii, M. E. Salukvadze, The vector-valued maximin, Academic Press, New York, 1994 | DOI | MR | Zbl

[30] N. N. Krasovskii, A. I. Subbotin, Pozitsionnye differentsialnye igry, Nauka, M., 1984 | MR

[31] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004 | MR