Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2021_57_a0, author = {I. N. Banshchikova}, title = {Local assignability of {Lyapunov} exponents of linear discrete-time system}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {3--76}, publisher = {mathdoc}, volume = {57}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2021_57_a0/} }
TY - JOUR AU - I. N. Banshchikova TI - Local assignability of Lyapunov exponents of linear discrete-time system JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2021 SP - 3 EP - 76 VL - 57 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2021_57_a0/ LA - ru ID - IIMI_2021_57_a0 ER -
%0 Journal Article %A I. N. Banshchikova %T Local assignability of Lyapunov exponents of linear discrete-time system %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2021 %P 3-76 %V 57 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2021_57_a0/ %G ru %F IIMI_2021_57_a0
I. N. Banshchikova. Local assignability of Lyapunov exponents of linear discrete-time system. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 57 (2021), pp. 3-76. http://geodesic.mathdoc.fr/item/IIMI_2021_57_a0/
[1] L. Ya. Adrianova, Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd. SPbGU, SPb., 1992 | MR
[2] I. N. Banschikova, S. N. Popova, “O spektralnom mnozhestve lineinoi diskretnoi sistemy s ustoichivymi pokazatelyami”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 15–26 | DOI | MR
[3] I. N. Banschikova, “Primer lineinoi diskretnoi sistemy s neustoichivymi pokazatelyami”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 26:2 (2016), 169–176 | DOI | MR
[4] I. N. Banschikova, S. N. Popova, “O svoistve integralnoi razdelennosti sistem s diskretnym vremenem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 27:4 (2017), 481–498 | DOI | MR
[5] I. N. Banschikova, “K svoistvu ravnomernoi polnoi upravlyaemosti sistem s diskretnym vremenem”, Sovremennye problemy matematiki i ee prilozhenii, tezisy Mezhdunarodnoi (49-i Vserossiiskoi) molodezhnoi shkoly-konferentsii, IMM UrO RAN, Ekaterinburg, 2018, 23
[6] I. N. Banschikova, E. K. Makarov, S. N. Popova, “Ob usloviyakh proportsionalnoi lokalnoi upravlyaemosti spektra pokazatelei Lyapunova lineinoi sistemy s diskretnym vremenem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 29:3 (2019), 301–311 | DOI | MR
[7] I. N. Banschikova, S. N. Popova, “Neobkhodimye i dostatochnye usloviya proportsionalnoi lokalnoi upravlyaemosti pokazatelei Lyapunova lineinykh sistem s diskretnym vremenem”, Differentsialnye uravneniya, 56:1 (2020), 122–132 | DOI
[8] V. T. Borukhov, O. M. Kvetko, “Kriterii stabiliziruemosti diskretnykh lineinykh beskonechnomernykh sistem v metricheskikh i ultrametricheskikh prostranstvakh”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2010, no. 2, 3–11 | Zbl
[9] B. F. Bylov, “O privedenii sistemy lineinykh uravnenii k diagonalnomu vidu”, Matematicheskii sbornik, 67(109):3 (1965), 338–344 | Zbl
[10] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova, Nauka, M., 1966
[11] B. F. Bylov, N. A. Izobov, “Neobkhodimye i dostatochnye usloviya ustoichivosti kharakteristicheskikh pokazatelei lineinoi sistemy”, Differentsialnye uravneniya, 5:10 (1969), 1794–1803 | MR | Zbl
[12] B. F. Bylov, “O privedenii lineinoi sistemy k blochno-treugolnomu vidu”, Differentsialnye uravneniya, 23:12 (1987), 2027–2031 | MR
[13] R. E. Vinograd, “O tsentralnom kharakteristicheskom pokazatele sistemy differentsialnykh uravnenii”, Matematicheskii sbornik, 42(84):2 (1957), 207–222 | MR | Zbl
[14] I. V. Gaishun, Sistemy s diskretnym vremenem, Institut matematiki NAN Belarusi, Minsk, 2001
[15] S. A. Grishin, “Nekotorye voprosy upravleniya i ustoichivosti lineinykh sistem”, Differentsialnye uravneniya, 18:11 (1982), 1862–1869 | MR
[16] V. B. Demidovich, “Ob odnom priznake ustoichivosti raznostnykh uravnenii”, Differentsialnye uravneniya, 5:7 (1969), 1247–1255 | MR | Zbl
[17] V. A. Zaitsev, “Stabilizatsiya statsionarnykh affinnykh upravlyaemykh sistem s diskretnym vremenem”, Differentsialnye uravneniya, 51:12 (2015), 1658–1669 | DOI
[18] N. A. Izobov, “O starshem pokazatele lineinoi sistemy s eksponentsialnymi vozmuscheniyami”, Differentsialnye uravneniya, 5:7 (1969), 1186–1192 | MR | Zbl
[19] N. A. Izobov, “Lineinye sistemy obyknovennykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Matematicheskii analiz, 12, 1974, 71–146 | Zbl
[20] N. A. Izobov, T. E. Zvereva, “Spektr kharakteristicheskikh pokazatelei Lyapunova dvukhmernoi statsionarnoi sistemy pri vozmuscheniyakh-povorotakh”, Differentsialnye uravneniya, 17:11 (1981), 1964–1977 | MR
[21] N. A. Izobov, “Eksponentsialnye pokazateli lineinoi sistemy i ikh vychislenie”, Doklady AN BSSR, 26:1 (1982), 5–8 | MR
[22] N. A. Izobov, “O kharakteristicheskikh pokazatelyakh lineinykh sistem s grobmanovskimi vozmuscheniyami”, Differentsialnye uravneniya, 27:3 (1991), 428–437 | MR | Zbl
[23] N. A. Izobov, “O suschestvovanii grobmanovskikh spektralnykh mnozhestv lineinykh sistem polozhitelnoi mery”, Differentsialnye uravneniya, 27:6 (1991), 953–957 | MR | Zbl
[24] A. A. Kandakov, K. M. Chudinov, “Effektivnyi kriterii ustoichivosti diskretnoi dinamicheskoi sistemy”, Prikladnaya matematika i voprosy upravleniya, 2017, no. 4, 88–103
[25] A. A. Kandakov, K. M. Chudinov, “Effektivnye kriterii eksponentsialnoi ustoichivosti avtonomnykh raznostnykh uravnenii”, Vestnik Tambovskogo universiteta. Ser. Estestvennye i tekhnicheskie nauki, 23:123 (2018), 402–414 | DOI
[26] A. Yu. Kulikov, V. V. Malygina, “Ustoichivost lineinogo raznostnogo uravneniya i otsenki ego fundamentalnogo resheniya”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2011, no. 12, 30–41 | Zbl
[27] G. A. Leonov, “Problema Broketta dlya lineinykh diskretnykh sistem upravleniya”, Avtomatika i telemekhanika, 2002, no. 5, 92–96 | Zbl
[28] E. K. Makarov, S. N. Popova, “K metodu povorotov dlya lineinykh upravlyaemykh sistem”, Doklady NAN Belarusi, 42:6 (1998), 13–16 | MR | Zbl
[29] E. K. Makarov, S. N. Popova, Upravlyaemost asimptoticheskikh invariantov nestatsionarnykh lineinykh sistem, Belaruskaya navuka, Minsk, 2012
[30] V. M. Millionschikov, “Kriterii malogo izmeneniya napravlenii reshenii lineinoi sistemy differentsialnykh uravnenii pri malykh vozmuscheniyakh koeffitsientov sistemy”, Matematicheskie zametki, 4:2 (1968), 173–180
[31] V. M. Millionschikov, “Dokazatelstvo dostizhimosti tsentralnykh pokazatelei lineinykh sistem”, Sibirskii matematicheskii zhurnal, 10:1 (1969), 99–104
[32] V. M. Millionschikov, “Grubye svoistva lineinykh sistem differentsialnykh uravnenii”, Differentsialnye uravneniya, 5:10 (1969), 1755–1784 | MR
[33] V. M. Popov, Giperustoichivost avtomaticheskikh sistem, Nauka, M., 1970
[34] C. N. Popova, Zadachi upravleniya pokazatelyami Lyapunova, dis. ... kand. fiz. matem. nauk, UdGU, Izhevsk, 1992
[35] M. I. Rakhimberdiev, N. Kh. Rozov, “Raspredelenie pokazatelei Lyapunova lineinykh sistem s periodicheskimi koeffitsientami, blizkimi v srednem k postoyannym”, Differentsialnye uravneniya, 14:9 (1978), 1710–1714 | MR | Zbl
[36] I. N. Sergeev, “Tochnye verkhnie granitsy podvizhnosti pokazatelei Lyapunova sistemy differentsialnykh uravnenii i povedenie pokazatelei pri vozmuscheniyakh, stremyaschikhsya k nulyu na beskonechnosti”, Differentsialnye uravneniya, 16:3 (1980), 438–448 | MR | Zbl
[37] I. N. Sergeev, “Tochnye granitsy podvizhnosti pokazatelei Lyapunova lineinykh sistem pri malykh v srednem vozmuscheniyakh”, Trudy seminara im. I. G. Petrovskogo, 11, 1986, 32–73 | Zbl
[38] A. G. Surkov, O spektralnom mnozhestve lineinykh sistem vtorogo poryadka s ogranichennymi vozmuscheniyami, Preprint No 22(207), AN BSSR. In-t matematiki, Minsk, 1984
[39] E. L. Tonkov, K teorii lineinykh upravlyaemykh sistem, Izdatelskii tsentr «Udmurtskii universitet», Izhevsk, 2018
[40] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR
[41] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR
[42] A. Babiarz, A. Czornik, E. Makarov, M. Niezabitowski, S. Popova, “Pole placement theorem for discrete time-varying linear systems”, SIAM Journal on Control and Optimization, 55:2 (2017), 671–692 | DOI | MR | Zbl
[43] A. Babiarz, I. Banshchikova, A. Czornik, E. Makarov, M. Niezabitowski, S. Popova, “Necessary and sufficient conditions for assignability of the Lyapunov spectrum of discrete linear time-varying systems”, IEEE Transactions on Automatic Control, 63:11 (2018), 3825–3837 | DOI | MR | Zbl
[44] A. Babiarz, I. Banshchikova, A. Czornik, E. Makarov, M. Niezabitowski, S. Popova, “Proportional local assignability of Lyapunov spectrum of linear discrete time-varying systems”, SIAM Journal on Control and Optimization, 57:2 (2019), 1355–1377 | DOI | MR | Zbl
[45] A. Bacciotti, A. Biglio, “Some remarks about stability of nonlinear discrete-time control systems”, Nonlinear Differential Equations and Applications, 8:4 (2001), 425–438 | DOI | MR | Zbl
[46] S. Bittanti, P. Bolzern, G. De Nicolao, J. C. Engwerda, “Comments on “Stabilizability and detectability of discrete-time, time-varying systems””, IEEE Transactions on Automatic Control, 37:8 (1992), 1274–1275 | DOI | MR | Zbl
[47] C. I. Byrnes, W. Lin, B. K. Ghosh, “Stabilization of discrete-time nonlinear systems by smooth state feedback”, Systems and Control Letters, 21:3 (1993), 255–263 | DOI | MR | Zbl
[48] V. Cheng, “A direct way to stabilize continuous-time and discrete-time linear time-varying systems”, IEEE Transactions on Automatic Control, 24:4 (1979), 641–643 | DOI | MR | Zbl
[49] B. Dickinson, “On the fundamental theorem of linear state variable feedback”, IEEE Transactions on Automatic Control, 19:5 (1974), 577–579 | DOI | MR | Zbl
[50] S. Elaydi, An introduction to difference equations, Springer, New York, 2005 | DOI | MR | Zbl
[51] J. C. Engwerda, “Stabilizability and detectability of discrete-time time-varying systems”, IEEE Transactions on Automatic Control, 35:4 (1990), 425–429 | DOI | MR | Zbl
[52] L. Grune, F. Wirth, “Feedback stabilization of discrete-time homogeneous semilinear systems”, Systems and Control Letters, 37:1 (1999), 19–30 | DOI | MR | Zbl
[53] A. Halanay, V. Ionescu, Time-varying discrete linear systems: input-output operators, Riccati equations, disturbance attenuation, Springer, Basel, 1994 https://www.springer.com/gp/book/9783764350123
[54] R. Johnson, R. Obaya, S. Novo, G. Núñez, R. Fabbri, Nonautonomous linear Hamiltonian systems: oscillation, spectral theory and control, Springer, Cham, 2016 | DOI | MR | Zbl
[55] R. E. Kalman, “Contribution to the theory of optimal control”, Boletin de la Sociedad Matematika Mexicana, 5:1 (1960), 102–119 | MR | Zbl
[56] J. Klamka, Controllability of dynamical systems, Kluwer Academic Publishers, Dordrecht, 1991 | MR | Zbl
[57] W. Kwon, A. Pearson, “On feedback stabilization of time-varying discrete linear systems”, IEEE Transactions on Automatic Control, 23:3 (1978), 479–481 | DOI | MR | Zbl
[58] W. Lin, “Further results on global stabilization of discrete nonlinear systems”, Systems and Control Letters, 29:1 (1996), 51–59 | DOI | MR | Zbl
[59] O. Perron, “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Mathematische Zeitschrift, 31:1 (1930), 748–766 | DOI | MR | Zbl
[60] S. N. Popova, I. N. Banshchikova, “Spectral set of a linear system with discrete time”, Journal of Mathematical Sciences, 230:5 (2018), 752–756 | DOI | MR | Zbl
[61] S. N. Popova, I. N. Banshchikova, “On the property of proportional local assignability of the Lyapunov spectrum for discrete time-varying systems”, Proceedings of 2018 14th International Conference “Stability and oscillations of nonlinear control systems”, Pyatnitskiy's conference) (STAB) (Russia, Moscow, V. A. Trapeznikov Institute of control sciences, May 30–June 1, 2018), IEEE, M., 2018 | DOI | MR | Zbl
[62] G. Sell, Topological dynamics and ordinary differential equations, Van Nostrand Reinhold mathematical studies, Van Nostrand, New York, 1971 | MR | Zbl
[63] G. R. Sell, “The Floquet problem for almost periodic linear differential equations”, Ordinary and partial differential equations, Springer, New York, 1974, 239–251 | DOI | MR
[64] E. D. Sontag, Mathematical control theory: deterministic finite dimensional systems, Texts in Applied Mathematics, 6, Springer, New York, 2013 https://www.springer.com/gp/book/9780387984896
[65] J. Tsinias, “Stabilizability of discrete-time nonlinear systems”, IMA Journal of Mathematical Control and Information, 6:2 (1989), 135–150 | DOI | MR | Zbl
[66] W. M. Wonham, “On pole assignment in multi-input controllable linear systems”, IEEE Transactions on Automatic Control, 12:6 (1967), 660–665 | DOI
[67] V. Zaitsev, “Sufficient conditions for uniform global asymptotic stabilization of discrete-time periodic bilinear systems”, IFAC-PapersOnLine, 50:1 (2017), 11529–11534 | DOI