Some topological properties of the space of maximal linked systems with topology of Wallman type
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 122-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Maximal linked systems (MLS) and ultrafilters (u/f) on a widely understood measurable space (this is a nonempty set with equipment in the form of $\pi$-system with «zero» and «unit») are investigated. Under equipment with topology of Wallman type, the set of MLS is converted into a supercompact $T_1$-space. Conditions under which given space of MLS is a supercompactum (i. e., a supercompact $T_2$-space) are investigated. These conditions then apply to the space of u/f under equipment with topology of Wallman type. The obtained conditions are coordinated with representations obtained under degenerate cases of bitopological spaces with topologies of Wallman and Stone types, but they are not the last to be exhausted.
Keywords: maximal linked system, quasineighborhood, topology, ultrafilter.
@article{IIMI_2020_56_a9,
     author = {A. G. Chentsov},
     title = {Some topological properties of the space of maximal linked systems with topology of {Wallman} type},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {122--137},
     publisher = {mathdoc},
     volume = {56},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2020_56_a9/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Some topological properties of the space of maximal linked systems with topology of Wallman type
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2020
SP  - 122
EP  - 137
VL  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2020_56_a9/
LA  - ru
ID  - IIMI_2020_56_a9
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Some topological properties of the space of maximal linked systems with topology of Wallman type
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2020
%P 122-137
%V 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2020_56_a9/
%G ru
%F IIMI_2020_56_a9
A. G. Chentsov. Some topological properties of the space of maximal linked systems with topology of Wallman type. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 56 (2020), pp. 122-137. http://geodesic.mathdoc.fr/item/IIMI_2020_56_a9/

[1] Bulinskii A. V., Shiryaev A. N., Theory of random processes, Fizmatlit, M., 2005

[2] Fedorchuk V. V., Filippov V. V., General topology. Base constructions, Fizmatlit, M., 2006

[3] Engelking R., General topology, Państwowe Wydawnictwo Naukowe, Warszawa, 1985 | MR

[4] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR

[5] van Mill J., Supercompactness and Wallman spaces, Mathematisch Centrum, Amsterdam, 1977 | MR | Zbl

[6] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl

[7] Arkhangelskii A. V., “Compactness”, General Topology II, Encyclopaedia Math. Sci., 50, Springer-Verlag, Berlin, 1996, 1–117 | MR

[8] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 24, no. 1, 2018, 257–272 (in Russian) | DOI

[9] Chentsov A. G., “Supercompact spaces of ultrafilters and maximal linked systems”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 2, 2019, 240–257 (in Russian) | DOI

[10] Aleksandrov P. S., Introduction to set theory and general topology, Editorial URSS, M., 2004

[11] Burbaki N., General topology. Basis structures, Nauka, M., 1968

[12] Chentsov A. G., “Ultrafilters and maximal linked systems”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 27:3 (2017), 365–388 (in Russian) | DOI | MR | Zbl

[13] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Mathematical Journal, 3:2 (2017), 100–121 | DOI | MR | Zbl

[14] Chentsov A. G., “To a question on the supercompactness of ultrafilter spaces”, Ural Mathematical Journal, 5:1 (2019), 31–47 | DOI | MR | Zbl

[15] Chentsov A. G., “Ultrafilters and maximal linked systems: basic properties and topological constructions”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 52 (2018), 86–102 (in Russian) | DOI | Zbl

[16] Dvalishvili B. P., Bitopological spaces: theory, relations with generalized algebraic structures, and applications, North–Holland, Amsterdam, 2005 | MR | Zbl

[17] Chentsov A. G., Elements of a finitely additive measure theory, v. I, USTU–UPI, Yekaterinburg, 2009

[18] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “About points of compactification of $N$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, no. 3, 10–17 (in Russian) | DOI

[19] Gryzlov A. A., Golovastov R. A., “The Stone spaces of Boolean algebras”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, no. 1, 11–16 (in Russian) | DOI | Zbl

[20] Golovastov R. A., “About Stone space of one Boolean algebra”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, no. 3, 19–24 (in Russian) | DOI | Zbl

[21] Chentsov A. G., “Some properties of ultrafilters of widely understood measurable spaces”, Doklady Mathematics, 99:3 (2019), 255–259 | DOI | DOI | Zbl

[22] Chentsov A. G., “On the supercompactness of ultrafilter space with the topology of Wallman type”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 54 (2019), 74–101 (in Russian) | DOI | Zbl