Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a2, author = {A. R. Danilin and A. A. Shaburov}, title = {Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {33--41}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/} }
TY - JOUR AU - A. R. Danilin AU - A. A. Shaburov TI - Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 33 EP - 41 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/ LA - ru ID - IIMI_2020_55_a2 ER -
%0 Journal Article %A A. R. Danilin %A A. A. Shaburov %T Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 33-41 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/ %G ru %F IIMI_2020_55_a2
A. R. Danilin; A. A. Shaburov. Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 33-41. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Interscience Publishers, New York, 1962 | MR | MR | Zbl
[2] Krasovskii N. N., Theory of motion control. Linear systems, Nauka, M., 1968
[3] Lee E. B., Markus L., Foundations of optimal control theory, John Wiley and Sons, Inc., New York–London–Sydney, 1967 | MR | Zbl
[4] Dontchev A. L., Perturbations, approximations and sensitivity analysis of optimal control systems, Springer, Berlin, 1983 | DOI | MR | Zbl
[5] Kokotovic P. V., Haddad A. H., “Controllability and time-optimal control of systems with slow and fast models”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl
[6] Dmitriev M. G., Kurina G. A., “Singular perturbations in control problems”, Automation and Remote Control, 67:1 (2006), 1–43 | DOI | MR | Zbl
[7] Vasil'eva A. B., Butuzov V. F., Asymptotic expansions of solutions of singularly perturbed equations, Nauka, M., 1973
[8] Danilin A. R., Kovrizhnykh O. O., “On the problem of controlling a small mass point in an environment without resistance”, Dokl. Akad. Nauk, 448:6 (2013), 612–614 (in Russian) | DOI | Zbl
[9] Danilin A. R., Kovrizhnykh O. O., “Asymptotics of the optimal time in a time-optimal problem with two small parameters”, Proceedings of the Steklov Institute of Mathematics, 288, suppl. 1 (2015), 46–53 | DOI | MR
[10] Zhang Y., Naidu D. S., Chenxiao Cai, Yun Zou, “Singular perturbations and time scales in control theories and applications: an overview 2002–2012”, International Journal of Informaton and Systems Sciences, 9:1 (2014), 1–36 | MR
[11] Kurina G. A., Nguyen T. H., “Asymptotic solution of singularly perturbed linear–quadratic optimal control problems with discontinuous coefficients”, Computational Mathematics and Mathematical Physics, 52:4 (2012), 524–547 | DOI | MR | Zbl
[12] Kurina G. A., Hoai N. T., “Projector approach for constructing the zero order asymptotic solution for the singularly perturbed linear–quadratic control problem in a critical case”, AIP Conference Proceedings, 1997 (2018), 020073 | DOI
[13] Shaburov A. A., “Asymptotic expansion of a solution of a singularly perturbed optimal control problem in the space $\mathbb{R}^{n}$ with an integral convex performance index”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 23, no. 2, 2017, 303–310 (in Russian) | DOI | MR
[14] Rockafellar R. T., Convex analysis, Princeton University Press, Princeton, New Jersey, 1972 | MR
[15] Danilin A. R., Shaburov A. A., “Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variables”, Ufa Mathematical Journal, 11:2 (2019), 82–96 | DOI | MR