Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2020_55_a2, author = {A. R. Danilin and A. A. Shaburov}, title = {Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {33--41}, publisher = {mathdoc}, volume = {55}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/} }
TY - JOUR AU - A. R. Danilin AU - A. A. Shaburov TI - Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2020 SP - 33 EP - 41 VL - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/ LA - ru ID - IIMI_2020_55_a2 ER -
%0 Journal Article %A A. R. Danilin %A A. A. Shaburov %T Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2020 %P 33-41 %V 55 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/ %G ru %F IIMI_2020_55_a2
A. R. Danilin; A. A. Shaburov. Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variables. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 55 (2020), pp. 33-41. http://geodesic.mathdoc.fr/item/IIMI_2020_55_a2/