Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IIMI_2019_54_a8, author = {T. K. Yuldashev}, title = {Spectral singularities of solutions to a boundary-value problem for the {Fredholm} integro-differential equation of the second order with reflection of argument}, journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta}, pages = {122--134}, publisher = {mathdoc}, volume = {54}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/} }
TY - JOUR AU - T. K. Yuldashev TI - Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2019 SP - 122 EP - 134 VL - 54 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/ LA - ru ID - IIMI_2019_54_a8 ER -
%0 Journal Article %A T. K. Yuldashev %T Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2019 %P 122-134 %V 54 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/ %G ru %F IIMI_2019_54_a8
T. K. Yuldashev. Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 122-134. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/
[1] Kalinin E. D., “Solving the multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations”, Computational Mathematics and Mathematical Physics, 55:1 (2015), 43–52 | DOI | DOI | MR | Zbl
[2] Smirnov Yu.G., “Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides”, Computational Mathematics and Mathematical Physics, 55:3 (2015), 461–469 | DOI | DOI | MR | Zbl
[3] Nazarov S. A., “Breakdown of cycles and the possibility of opening spectral gaps in a square lattice of thin acoustic waveguides”, Izvestiya: Mathematics, 82:6 (2018), 1148–1195 | DOI | DOI | MR | Zbl
[4] Alves M., Labovskiy S., “On spectral problem for a functional differential equation with mixed continuous and discrete measure”, Functional Differential Equations, 25:1–2 (2018), 3–19 | MR
[5] Cetinkaya F. A., Mamedov K. R., “A boundary value problem with retarded argument and discontinuous coefficient in the differential equation”, Azerbaijan Journal of Mathematics, 7:1 (2017), 135–145 https://www.azjm.org/volumes/7-1.html | MR | Zbl
[6] Nazarov S. A., Pérez M. E., “On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary”, Revista Matemática Complutense, 31:1 (2018), 1–62 | DOI | MR | Zbl
[7] Nazarov S. A., Taskinen J., “Essential spectrum of a periodic waveguide with non-periodic perturbation”, Journal of Mathematical Analysis and Applications, 463:2 (2018), 922–933 | DOI | MR | Zbl
[8] Ushakov E. I., Static stability of electrical circuits, Nauka, Novosibirsk, 1988
[9] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Mathematical Methods in the Applied Sciences, 24:14 (2001), 1043–1053 | DOI | MR | Zbl
[10] Yuldashev T. K., “Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel”, Differential Equations, 54:12 (2018), 1646–1653 | DOI | DOI | MR | Zbl
[11] Yuldashev T. K., “On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel”, Computational Mathematics and Mathematical Physics, 59:2 (2019), 241–252 | DOI | DOI | MR | Zbl
[12] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matematicheskoe Modelirovanie, 12:1 (2000), 94–103 | Zbl
[13] Ivanchov N. I., “Boundary value problems for a parabolic equation with integral conditions”, Differential Equations, 40:4 (2004), 591–609 | DOI | MR | Zbl
[14] Tikhonov I. V., “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izvestiya: Mathematics, 67:2 (2003), 333–363 | DOI | DOI | MR | Zbl
[15] Darovskaya K. A., Skubachevsky A. L., “A spectral problem with integral conditions”, Journal of Mathematical Sciences, 179:3 (2011), 437–445 | DOI | MR | Zbl
[16] Pod"yapol'skii V. V., “Abel summability of a system of root functions for a nonlocal problem with integral conditions”, Mathematical Notes, 65:5 (1999), 672–675 | DOI | DOI | MR
[17] Shkalikov A. A., “On the basis property of the eigenfunctions of ordinary differential operators with integral boundary conditions”, Vestnik Moskovskogo Universiteta. Ser. 1. Matematika i mekhanika, 1982, no. 6, 12–21 (in Russian)
[18] Bobodzhanov A. A., Safonov V. F., “Regularized asymptotic solutions of the initial problem for the system of integro-partial differential equations”, Mathematical Notes, 102:1 (2017), 22–30 | DOI | DOI | MR | Zbl
[19] Bykov Ya.V., On some problems in the theory of integro-differential equations, Kyrgyz State University, Frunze, 1957
[20] Vainberg M. M., “Integro-differential equations”, Itogi Nauki. Ser. Mat. Anal. Teor. Ver. Regulir. 1962, VINITI, M., 1964, 5–37 (in Russian)
[21] Zaripov S. K., “Constructing an analogue of the Fredholm theorem for a class of first-order model integro-differential equations with a singular point in the kernel”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, no. 46, 24–35 (in Russian) | DOI
[22] Iskandarov S., Khalilova G. T., “On lower estimates of solutions and their derivatives to a fourth-order linear integrodifferential Volterra equation”, Journal of Mathematical Sciences, 230:5 (2018), 688–694 | DOI | MR | Zbl
[23] Falaleev M. V., “Integro-differential equations with Fredholm operator on the highest derivative in Banach spaces and their applications”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Ser. Matematika, 5:2 (2012), 90–102 (in Russian) | Zbl
[24] Sidorov N. A., “Solution of the Cauchy problem for a certain class of integro-differential equations with analytic nonlinearities”, Differentsial'nye Uravneniya, 4:7 (1968), 1309–1316 | Zbl
[25] Yurko V. A., “Inverse problems for first-order integro-differential operators”, Mathematical Notes, 100:6 (2016), 876–882 | DOI | DOI | MR | Zbl
[26] Yuldashev T. K., “An ordinary integro-differential equation with a degenerate kernel and an integral condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 20:4 (2016), 644–655 (in Russian) | DOI | Zbl
[27] Yuldashev T. K., “On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii Journal of Mathematics, 40:2 (2019), 230–239 | DOI | MR | Zbl
[28] Trenogin V. A., Functional Analyses, Nauka, M., 1980