Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 122-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of solvability and construction of solutions to a nonlocal boundary-value problem for the nonlinear second-order nonlinear Fredholm integro-differential equation with a degenerate kernel, integral conditions and reflection of the argument are considered. The method of the degenerate kernel for the Fredholm integral equation is applied and developed for the case of the second-order nonlinear integro-differential equation. The spectral values of the parameters are calculated and the features arising in solving systems of algebraic equations and in determining arbitrary constants are studied. Criteria for the unique solvability of the stated nonlinear problem for regular values of spectral parameters are established. The method of successive approximations and the method of contraction mappings are used. The continuity of the solution of a boundary-value problem with respect to integral data is shown. The condition of smallness of this solution is revealed. For the irregular values of the spectral parameters, the problems of the existence or nonexistence of solutions to the nonlocal boundary-value problem under consideration are studied and solutions of this problem in the case of existence are constructed.
Keywords: integro-differential equation, boundary-value problem, reflection of argument, integral conditions, spectral parameters, solvability.
@article{IIMI_2019_54_a8,
     author = {T. K. Yuldashev},
     title = {Spectral singularities of solutions to a boundary-value problem for the {Fredholm} integro-differential equation of the second order with reflection of argument},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {122--134},
     publisher = {mathdoc},
     volume = {54},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 122
EP  - 134
VL  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/
LA  - ru
ID  - IIMI_2019_54_a8
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 122-134
%V 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/
%G ru
%F IIMI_2019_54_a8
T. K. Yuldashev. Spectral singularities of solutions to a boundary-value problem for the Fredholm integro-differential equation of the second order with reflection of argument. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 122-134. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a8/

[1] Kalinin E. D., “Solving the multiparameter eigenvalue problem for weakly coupled systems of second order Hamilton equations”, Computational Mathematics and Mathematical Physics, 55:1 (2015), 43–52 | DOI | DOI | MR | Zbl

[2] Smirnov Yu.G., “Eigenvalue transmission problems describing the propagation of TE and TM waves in two-layered inhomogeneous anisotropic cylindrical and planar waveguides”, Computational Mathematics and Mathematical Physics, 55:3 (2015), 461–469 | DOI | DOI | MR | Zbl

[3] Nazarov S. A., “Breakdown of cycles and the possibility of opening spectral gaps in a square lattice of thin acoustic waveguides”, Izvestiya: Mathematics, 82:6 (2018), 1148–1195 | DOI | DOI | MR | Zbl

[4] Alves M., Labovskiy S., “On spectral problem for a functional differential equation with mixed continuous and discrete measure”, Functional Differential Equations, 25:1–2 (2018), 3–19 | MR

[5] Cetinkaya F. A., Mamedov K. R., “A boundary value problem with retarded argument and discontinuous coefficient in the differential equation”, Azerbaijan Journal of Mathematics, 7:1 (2017), 135–145 https://www.azjm.org/volumes/7-1.html | MR | Zbl

[6] Nazarov S. A., Pérez M. E., “On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary”, Revista Matemática Complutense, 31:1 (2018), 1–62 | DOI | MR | Zbl

[7] Nazarov S. A., Taskinen J., “Essential spectrum of a periodic waveguide with non-periodic perturbation”, Journal of Mathematical Analysis and Applications, 463:2 (2018), 922–933 | DOI | MR | Zbl

[8] Ushakov E. I., Static stability of electrical circuits, Nauka, Novosibirsk, 1988

[9] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a non-linear viscoelastic equation with strong damping”, Mathematical Methods in the Applied Sciences, 24:14 (2001), 1043–1053 | DOI | MR | Zbl

[10] Yuldashev T. K., “Nonlocal boundary value problem for a nonlinear Fredholm integro-differential equation with degenerate kernel”, Differential Equations, 54:12 (2018), 1646–1653 | DOI | DOI | MR | Zbl

[11] Yuldashev T. K., “On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel”, Computational Mathematics and Mathematical Physics, 59:2 (2019), 241–252 | DOI | DOI | MR | Zbl

[12] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matematicheskoe Modelirovanie, 12:1 (2000), 94–103 | Zbl

[13] Ivanchov N. I., “Boundary value problems for a parabolic equation with integral conditions”, Differential Equations, 40:4 (2004), 591–609 | DOI | MR | Zbl

[14] Tikhonov I. V., “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izvestiya: Mathematics, 67:2 (2003), 333–363 | DOI | DOI | MR | Zbl

[15] Darovskaya K. A., Skubachevsky A. L., “A spectral problem with integral conditions”, Journal of Mathematical Sciences, 179:3 (2011), 437–445 | DOI | MR | Zbl

[16] Pod"yapol'skii V. V., “Abel summability of a system of root functions for a nonlocal problem with integral conditions”, Mathematical Notes, 65:5 (1999), 672–675 | DOI | DOI | MR

[17] Shkalikov A. A., “On the basis property of the eigenfunctions of ordinary differential operators with integral boundary conditions”, Vestnik Moskovskogo Universiteta. Ser. 1. Matematika i mekhanika, 1982, no. 6, 12–21 (in Russian)

[18] Bobodzhanov A. A., Safonov V. F., “Regularized asymptotic solutions of the initial problem for the system of integro-partial differential equations”, Mathematical Notes, 102:1 (2017), 22–30 | DOI | DOI | MR | Zbl

[19] Bykov Ya.V., On some problems in the theory of integro-differential equations, Kyrgyz State University, Frunze, 1957

[20] Vainberg M. M., “Integro-differential equations”, Itogi Nauki. Ser. Mat. Anal. Teor. Ver. Regulir. 1962, VINITI, M., 1964, 5–37 (in Russian)

[21] Zaripov S. K., “Constructing an analogue of the Fredholm theorem for a class of first-order model integro-differential equations with a singular point in the kernel”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, no. 46, 24–35 (in Russian) | DOI

[22] Iskandarov S., Khalilova G. T., “On lower estimates of solutions and their derivatives to a fourth-order linear integrodifferential Volterra equation”, Journal of Mathematical Sciences, 230:5 (2018), 688–694 | DOI | MR | Zbl

[23] Falaleev M. V., “Integro-differential equations with Fredholm operator on the highest derivative in Banach spaces and their applications”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Ser. Matematika, 5:2 (2012), 90–102 (in Russian) | Zbl

[24] Sidorov N. A., “Solution of the Cauchy problem for a certain class of integro-differential equations with analytic nonlinearities”, Differentsial'nye Uravneniya, 4:7 (1968), 1309–1316 | Zbl

[25] Yurko V. A., “Inverse problems for first-order integro-differential operators”, Mathematical Notes, 100:6 (2016), 876–882 | DOI | DOI | MR | Zbl

[26] Yuldashev T. K., “An ordinary integro-differential equation with a degenerate kernel and an integral condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 20:4 (2016), 644–655 (in Russian) | DOI | Zbl

[27] Yuldashev T. K., “On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter”, Lobachevskii Journal of Mathematics, 40:2 (2019), 230–239 | DOI | MR | Zbl

[28] Trenogin V. A., Functional Analyses, Nauka, M., 1980