On a problem related to second-order Diophantine equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 38-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the problem set by V. N. Ushakov of finding triangles with integer lengths of sides $a$, $b$, $c$, satisfying the relations $a^2=b^2+c^2+k$ and $\dfrac{a}{c}=\dfrac{3}{2}$, where $k$ is a nonzero integer. We give a necessary and sufficient condition for the number $k$ under which such triangles exist. The proof is constructive and allows, in the case of satisfying the criterion, to indicate an infinite number of triples $(a,b,c)$ with the given property.
Keywords: systems of diophantine equations, recurrence relations, Fibonacci and Lucas numbers.
@article{IIMI_2019_54_a2,
     author = {A. E. Lipin},
     title = {On a problem related to second-order {Diophantine} equations},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {38--44},
     year = {2019},
     volume = {54},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_54_a2/}
}
TY  - JOUR
AU  - A. E. Lipin
TI  - On a problem related to second-order Diophantine equations
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 38
EP  - 44
VL  - 54
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_54_a2/
LA  - ru
ID  - IIMI_2019_54_a2
ER  - 
%0 Journal Article
%A A. E. Lipin
%T On a problem related to second-order Diophantine equations
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 38-44
%V 54
%U http://geodesic.mathdoc.fr/item/IIMI_2019_54_a2/
%G ru
%F IIMI_2019_54_a2
A. E. Lipin. On a problem related to second-order Diophantine equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 54 (2019), pp. 38-44. http://geodesic.mathdoc.fr/item/IIMI_2019_54_a2/

[1] Ushakov V.N., “Egyptian triangles and Fibonacci numbers”, Imperiya Matematiki, 2001, no. 11, 21–50 (in Russian)

[2] Gel'fond A.O., Solving equations in integers, Gostekhizdat, M., 1957

[3] Hinchin A.Ya., Continued fraction, GIFML, M., 1960

[4] Vorob'ev N.N., Fibonacci numbers, Nauka, M., 1978

[5] Coxeter H.S.M., Introduction to geometry, John Wiley Sons, New York–London, 1961 | MR | Zbl

[6] Latushkin Ya.A., Ushakov V.N., “On the representation of Fibonacci and Lucas numbers as the sum of three squares”, Mathematical Notes, 91:5–6 (2012), 663–670 | DOI | DOI | MR | Zbl

[7] Gauss K.F., Works on number theory, Academy of Sciences of USSR, M., 1959

[8] Davenport H., The higher arithmetic: An introduction to the theory of numbers, Hutchinson's University Library, London, 1952 | MR | Zbl