Analysis of multimodal stochastic oscillations in a biochemical reaction model
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 27-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the dynamics of the two-dimensional biochemical Goldbeter model under the influence of random disturbances. The model describes an enzymatic reaction with nonlinear recirculation of a product into a substrate. We investigate parametric zones where the system exhibits the phenomenon of bistability: the coexistence of two stable periodic regimes or the coexistence of a stable equilibrium and a stable limit cycle. The noise-induced transitions of stochastic trajectories between deterministic attractors resulting in multimodal oscillations are demonstrated via the direct numerical simulation. It is shown how the effect of noise on the system changes the frequency and amplitude characteristics of stochastic self-oscillations.
Keywords: Goldbeter model, bistability, stochastic dynamics, random disturbances.
@article{IIMI_2019_53_a2,
     author = {I. A. Bashkirtseva and S. S. Zaitseva},
     title = {Analysis of multimodal stochastic oscillations in a biochemical reaction model},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {27--35},
     publisher = {mathdoc},
     volume = {53},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2019_53_a2/}
}
TY  - JOUR
AU  - I. A. Bashkirtseva
AU  - S. S. Zaitseva
TI  - Analysis of multimodal stochastic oscillations in a biochemical reaction model
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2019
SP  - 27
EP  - 35
VL  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2019_53_a2/
LA  - ru
ID  - IIMI_2019_53_a2
ER  - 
%0 Journal Article
%A I. A. Bashkirtseva
%A S. S. Zaitseva
%T Analysis of multimodal stochastic oscillations in a biochemical reaction model
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2019
%P 27-35
%V 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2019_53_a2/
%G ru
%F IIMI_2019_53_a2
I. A. Bashkirtseva; S. S. Zaitseva. Analysis of multimodal stochastic oscillations in a biochemical reaction model. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 53 (2019), pp. 27-35. http://geodesic.mathdoc.fr/item/IIMI_2019_53_a2/

[1] Goldbeter A., Gerard C., Gonze D., Leloup J.-C., Dupont G., “Systems biology of cellular rhythms”, FEBS Letters, 586:18 (2012), 2955–2965 | DOI

[2] Borghans J., Dupont G., Goldbeter A., “Complex intracellular calcium oscillations: a theoretical exploration of possible mechanisms”, Biophysical Chemistry, 66:1 (1997), 25–41 | DOI

[3] Goldbeter A., Gonze D., Houart G., Leloup J.-C., Halloy J., Dupont G., “From simple to complex oscillatory behavior in metabolic and genetic control networks”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 11:1 (2001), 247–260 | DOI | Zbl

[4] Bashkirtseva I., Ryashko L., Zaitseva S., “Analysis of nonlinear stochastic oscillations in the biochemical Goldbeter model”, Commun. Nonlinear Sci. Numer. Simulat., 73 (2019), 165–176 | DOI | MR

[5] Goldbeter A., Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour, Cambridge University Press, Cambridge, 1996 | Zbl

[6] Strogatz S., Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Addison-Wesley Publishing Company, Boston, 1994 | MR

[7] Gurel D., Gurel O., Oscillations in chemical reactions, Springer-Verlag, Berlin, 1983 | MR

[8] Bashkirtseva I., Ryashko L., “Stochastic sensitivity and variability of glycolytic oscillations in the randomly forced Sel'kov model”, Eur. Phys. J. B, 90:1 (2017), 17, 10 pp. | DOI | MR

[9] Ryashko L., “Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28:3 (2018), 033602 | DOI | MR

[10] Moran F., Goldbeter A., “Onset of birhythmicity in a regulated biochemical system”, Biophysical Chemistry, 20:1–2 (1984), 149–156 | DOI

[11] Dhooge A., Govaerts W., Kuznetsov Yu., Meijer H., Sautois B., “New features of the software MatCont for bifurcation analysis of dynamical systems”, Mathematical and Computer Modelling of Dynamical Systems, 14:2 (2008), 147–175 | DOI | MR | Zbl

[12] Kloeden P., Platen E., Numerical solution of stochastic differential equations, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl