The initial value problem for the quasi-linear partial integro-differential equation of higher order with a degenerate kernel
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 116-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

High-order partial differential equations are of great interest when it comes to physical applications. Many problems of gas dynamics, elasticity theory and the theory of plates and shells are reduced to the consideration of high-order partial differential equations. This paper studies the one-valued solvability of the initial value problem for a nonlinear partial integro-differential equation of an arbitrary order with a degenerate kernel. The expression of higher-order partial differential equations as a superposition of first-order partial differential operators has allowed us to apply methods for solving first-order partial differential equations. First-order partial differential equations can be locally solved by the methods of the theory of ordinary differential equations, reducing them to a characteristic system. The existence and uniqueness of the solution to this problem is proved by the method of successive approximation. An estimate of convergence of the iterative Picard process is obtained. The stability of the solution from the second argument of the initial value problem is shown.
Keywords: initial value problem, characteristic, derivative along the direction, degenerate kernel, superposition of partial differential operators, existence and uniqueness of the solution.
@article{IIMI_2018_52_a8,
     author = {T. K. Yuldashev},
     title = {The initial value problem for the quasi-linear partial integro-differential equation of higher order with a degenerate kernel},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {116--130},
     publisher = {mathdoc},
     volume = {52},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2018_52_a8/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - The initial value problem for the quasi-linear partial integro-differential equation of higher order with a degenerate kernel
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2018
SP  - 116
EP  - 130
VL  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIMI_2018_52_a8/
LA  - ru
ID  - IIMI_2018_52_a8
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T The initial value problem for the quasi-linear partial integro-differential equation of higher order with a degenerate kernel
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2018
%P 116-130
%V 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIMI_2018_52_a8/
%G ru
%F IIMI_2018_52_a8
T. K. Yuldashev. The initial value problem for the quasi-linear partial integro-differential equation of higher order with a degenerate kernel. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, Tome 52 (2018), pp. 116-130. http://geodesic.mathdoc.fr/item/IIMI_2018_52_a8/

[1] Algazin S. D., Kiiko I. A., Flutter of plates and shells, Nauka, M., 2006, 248 pp.

[2] Zamyshlyaeva A. A., “The higher-order Sobolev-type models”, Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Ser. Matematicheskoe Modelirovanie i Programmirovanie, 7:2 (2014), 5–28 (in Russian) | Zbl

[3] Benney D. J., Luke J. C., “On the interactions of permanent waves of finite amplitude”, Journal of Mathematics and Physics, 43 (1964), 309–313 | DOI | MR | Zbl

[4] Galaktionov V. A., Mitidieri E., Pohozaev S. I., “Global sign-changing solutions of a higher order semilinear heat equation in the subcritical Fujita range”, Advanced Nonlinear Studies, 12:3 (2012), 569–596 | DOI | MR | Zbl

[5] Karimov Sh.T., “Method of solving the Cauchy problem for one-dimensional polywave equation with singular Bessel operator”, Russian Mathematics, 61:8 (2017), 22–35 | DOI | MR | Zbl

[6] Koshanov B. D., Soldatov A. P., “Boundary value problem with normal derivatives for a higher-order elliptic equation on the plane”, Differential Equations, 52:12 (2016), 1594–1609 | DOI | DOI | MR | Zbl

[7] Pokhozhaev S. I., “On the solvability of quasilinear elliptic equations of arbitrary order”, Mathematics of the USSR-Sbornik, 45:2 (1983), 257–271 | DOI | MR | MR | Zbl | Zbl

[8] Skrypnik I. V., Nonlinear elliptic equations of higher order, Naukova dumka, Kiev, 1973, 219 pp.

[9] Yuldashev T. K., “Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power”, Computational Mathematics and Mathematical Physics, 52:1 (2012), 105–116 | DOI | MR | Zbl

[10] Yuldasheva A. V., “On a problem for a quasi-linear equation of even order”, Itogi Nauki i Tekhniki. Ser. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, 140, VINITI RAN, M., 2017, 43–49 (in Russian) | MR

[11] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Partial differential equations of the first order, Lomonosov Moscow State University, M., 1999, 96 pp.

[12] Imanaliev M. I., Ved' Yu. A., “First-order partial differential equation with an integral as a coefficient”, Differential Equations, 25:3 (1989), 325–335 | MR | Zbl

[13] Imanaliev M. I., Alekseenko S. N., “On the theory of systems of nonlinear integropartial differential equations of Whitham type”, Doklady Mathematics, 46:1 (1993), 169–173 | MR | Zbl

[14] Dontsova M. V., “Nonlocal solvability conditions for Cauchy problem for a system of first order partial differential equations with special right-hand sides”, Ufa Mathematical Journal, 6:4 (2014), 68–80 | DOI | MR

[15] Yuldashev T. K., “On the inverse problem for a quasilinear partial differential equation of the first order”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika. Mekhanika, 2012, no. 2 (18), 56–62 (in Russian)

[16] Yuldashev T. K., “On an inverse problem for a system of quazilinear equations in partial derivatives of the first order”, Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Ser. Matematika. Mekhanika. Fizika, 2012, no. 6, 35–41 (in Russian) | Zbl

[17] Yuldashev T. K., “Generalized solvability of the mixed value problem for a nonlinear integro-differential equation of higher order with a degenerate kernel”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 50 (2017), 121–132 | DOI | Zbl

[18] Yuldashev T. K., “Mixed problem for pseudoparabolic integro-differential equation with degenerate kernel”, Differential Equations, 53:1 (2017), 99–108 | DOI | DOI | MR | Zbl

[19] Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii Journal of Mathematics, 38:3 (2017), 547–553 | DOI | MR | Zbl

[20] Tikhonov A. N., Samarskii A. A., Equations of the mathematical physics, Nauka, M., 1977, 736 pp. | MR

[21] Il'in V.A., Moiseev E. I., “Minimization of the $L_p$-norm with arbitrary $p \ge 1$ of the derivative of a boundary displacement control on an arbitrary sufficiently large time interval $T$”, Differential Equations, 42:11 (2006), 1633–1644 | DOI | MR | Zbl

[22] Il'in V.A., Moiseev E. I., “Optimization of the boundary control of string vibrations by an elastic force on an arbitrary sufficiently large time interval”, Differential Equations, 42:12 (2006), 1775–1786 | DOI | MR | Zbl