Extended explicit scheme for solving dynamic structural problem
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2015), pp. 69-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the generalized explicit scheme for solving dynamic structure problems. We explore different options of operators that extend the stability conditions. In the paper, we present the results for three-dimensional problems.
Mots-clés : explicit scheme
Keywords: stability condition, structural dynamic, parallel algorithms.
@article{IIMI_2015_2_a8,
     author = {S. P. Kopysov and I. M. Kuz'min},
     title = {Extended explicit scheme for solving dynamic structural problem},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {69--75},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_2_a8/}
}
TY  - JOUR
AU  - S. P. Kopysov
AU  - I. M. Kuz'min
TI  - Extended explicit scheme for solving dynamic structural problem
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 69
EP  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_2_a8/
LA  - ru
ID  - IIMI_2015_2_a8
ER  - 
%0 Journal Article
%A S. P. Kopysov
%A I. M. Kuz'min
%T Extended explicit scheme for solving dynamic structural problem
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 69-75
%N 2
%U http://geodesic.mathdoc.fr/item/IIMI_2015_2_a8/
%G ru
%F IIMI_2015_2_a8
S. P. Kopysov; I. M. Kuz'min. Extended explicit scheme for solving dynamic structural problem. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2015), pp. 69-75. http://geodesic.mathdoc.fr/item/IIMI_2015_2_a8/

[1] Chetverushkin B. N., “Applied mathematics and problems of using high-performance computing”, Trudy Mosk. Fiz. Tekhn. Inst., 3:4 (2011), 55–67 (in Russian)

[2] Bazhenov V. G., Pirogov S. A., Chekmarev D. T., “Explicit scheme operator with a stabilizing solution for time-dependent problems of structural dynamics”, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 2002, no. 5, 120–130 (in Russian)

[3] Bathe K., Wilson E., Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, 1976, 524 pp. | Zbl

[4] Yankovskii A. P., “Study of spectral stability of generalized Runge–Kutta methods in the initial-boundary problems for the wave equation”, Vychislitel'naya mekhanika sploshnykh sred, 8:2 (2015), 117–135 (in Russian) | MR

[5] Chang S. Y., “An explicit method with improved stability property”, International Journal for Numerical Methods in Engineering, 77:8 (2009), 1100–1120 | DOI | MR | Zbl

[6] Chen C., Ricles J. M., “Stability Analysis of Direct Integration Algorithms Applied to Nonlinear Structural Dynamics”, Journal of Engineering Mechanics, 139:9 (2008), 703–711 | DOI

[7] Gui Y., Wang J.-T., Jin F., Chen C., Zhou M.-X., “Development of a family of explicit algorithms for structural dynamics with unconditional stability”, Nonlinear Dyn., 77:4 (2014), 1157–1170 | DOI | MR

[8] Kopysov S. P., Kuzmin I. M., Nedozhogin N. S., Novikov A. K., Rychkov V. N., Sagdeeva Yu. A., Tonkov L. E., “Parallel implementation of a finite-element algorithms on a graphics accelerator in the software package FEStudio”, Komp'yuternye Issledovaniya i Modelirovanie, 6:1 (2014), 79–97 (in Russian) | MR

[9] Kopysov S. P., Kuzmin I. M., Sagdeeva Yu. A., “Using programming model OpenMP+CUDA for solving dynamic elasticity problems”, Aktual'nye problemy matematiki, mekhaniki, informatiki, Transactions, Institute of Mathematics and Mechanics, Ural Branch of RAS, Ekaterinburg, 2012, 30–35 | MR

[10] Chekmarev D. T., Zhidkov A. V., The numerical solution of three-dimensional dynamic elasticity problems based on finite element method scheme openwork, Nizhnii Novgorod State University, Nizhnii Novgorod, 2010, 53 pp.

[11] Ali A., Hosseini M., Sahari B. B., “A review of constitutive models for rubber-like materials”, American J. of Engineering and Applied Sciences, 3:1 (2010), 232–239 | DOI

[12] Humphrey J. D., Yin F. C., “Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle”, Circ. Res., 653 (1989), 805–817 | DOI