Mots-clés : infinitesimal perturbations.
@article{IIMI_2015_2_a21,
author = {T. V. Salova},
title = {On the effectiveness of {Hamiltonian} uniformly small and infinitesimal perturbations of linear {Hamiltonian} systems},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {163--170},
year = {2015},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2015_2_a21/}
}
TY - JOUR AU - T. V. Salova TI - On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear Hamiltonian systems JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2015 SP - 163 EP - 170 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2015_2_a21/ LA - ru ID - IIMI_2015_2_a21 ER -
%0 Journal Article %A T. V. Salova %T On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear Hamiltonian systems %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2015 %P 163-170 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2015_2_a21/ %G ru %F IIMI_2015_2_a21
T. V. Salova. On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear Hamiltonian systems. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2015), pp. 163-170. http://geodesic.mathdoc.fr/item/IIMI_2015_2_a21/
[1] Arnol'd V. I., Mathematical methods of classical mechanics, Editorial URSS, M., 2000, 408 pp.
[2] Barabanov E. A., “The structure of the set of lower Perron exponents of a linear differential system”, Differ. Uravn., 22:11 (1986), 1843–1853 (in Russian) | MR | Zbl
[3] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Lyapunov exponents and its application to problems of stability, Nauka, M., 1966, 576 pp.
[4] Bylov B. F., Izobov N. A., “Necessary and sufficient conditions for the stability of the characteristic exponents of a linear system”, Differ. Uravn., 5:10 (1969), 1794–1803 (in Russian) | MR | Zbl
[5] Veremenyuk V. V., “Some questions of the theory of stability of Lyapunov exponents of linear Hamiltonian systems”, Differ. Uravn., 18:2 (1982), 205–219 (in Russian) | MR | Zbl
[6] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, M., 1967, 472 pp.
[7] Izobov N. A., “On the set of lower exponents of a linear differential system”, Differ. Uravn., 1:4 (1965), 469–477 (in Russian) | MR | Zbl
[8] Izobov N. A., Introduction to the theory of Lyapunov exponents, Minsk, 2006, 319 pp.
[9] Lyapunov A. M., General problem of stability of movement, Cherepovets, 2000, 386 pp.
[10] Millionshchikov V. M., “A proof of the accesibility of the central exponents of linear systems”, Sibirsk. Mat. Zh., 10:1 (1969), 99–104 (in Russian) | MR
[11] Millionshchikov V. M., “Baire's classes of functions and Lyapunov exponents, I”, Differ. Uravn., 16:8 (1980), 1408–1416 (in Russian) | MR
[12] Millionshchikov V. M., “Structurally stable properties of linear systems of differential equations”, Differ. Uravn., 5:10 (1969), 1775–1784 (in Russian) | MR | Zbl
[13] Salova T. V., “On the effectiveness of perturbations in the class of linear Hamiltonian systems”, Differential Equations, 51:1 (2015), 144–145 | DOI | DOI | MR | MR | Zbl
[14] Salova T. V., “On the effectiveness of Hamiltonian uniformly small and infinitesimal perturbations of linear systems”, Control Theory and Mathematical Modeling, Abstracts of All-Russian Conference, dedicated to the memory of professor N. V. Azbelev and professor E. L. Tonkov, Udmurt State University, Izhevsk, 2015, 119–121 (in Russian)
[15] Salova T. V., “On the effectiveness of perturbations in the class of linear Hamiltonian systems”, Vestnik Moskov. Gos. Univ. Ser. I Mat. Mekh., 2015, no. 6, 48–52 (in Russian)
[16] Sergeev I. N., “On the theory of Lyapunov exponents of linear systems of differential equations”, Tr. Semin. im. I. G. Petrovskogo, 9, 1983, 111–166 (in Russian) | MR | Zbl
[17] Sergeev I. N., “Partial limits of Lyapunov exponents of linear systems and their reachability”, Differ. Uravn., 35:6 (1999), 858 (in Russian) | Zbl
[18] Sergeev I. N., “Oscillatory and wandering characteristics of solutions of linear differential system”, Izv. Ross. Akad. Nauk. Ser. Mat., 76:1 (2012), 149–172 (in Russian) | DOI | MR | Zbl
[19] Sergeev I. N., “Accurate assessment of the effectiveness of Hamiltonian perturbations of linear systems”, Differ. Uravn., 51:6 (2015), 821–822 (in Russian) | MR