Singular characteristics of the piecewise-smooth minimax solution of the equation of Hamilton–Jacobi–Bellman
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2015), pp. 149-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the properties of the minimax piecewise-smooth solution of the Hamilton–Jacobi–Bellman equation. We raise the question of existence of the singular characteristic and properties of the solution related to it.
Keywords: Hamilton–Jacobi–Bellman's equation, minimax solution, singular set, piecewise-smooth solution, Rankin–Hugoniot's condition, singular characteristic.
Mots-clés : tangent space
@article{IIMI_2015_2_a19,
     author = {A. S. Rodin},
     title = {Singular characteristics of the piecewise-smooth minimax solution of the equation of {Hamilton{\textendash}Jacobi{\textendash}Bellman}},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {149--154},
     year = {2015},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2015_2_a19/}
}
TY  - JOUR
AU  - A. S. Rodin
TI  - Singular characteristics of the piecewise-smooth minimax solution of the equation of Hamilton–Jacobi–Bellman
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2015
SP  - 149
EP  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIMI_2015_2_a19/
LA  - ru
ID  - IIMI_2015_2_a19
ER  - 
%0 Journal Article
%A A. S. Rodin
%T Singular characteristics of the piecewise-smooth minimax solution of the equation of Hamilton–Jacobi–Bellman
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2015
%P 149-154
%N 2
%U http://geodesic.mathdoc.fr/item/IIMI_2015_2_a19/
%G ru
%F IIMI_2015_2_a19
A. S. Rodin. Singular characteristics of the piecewise-smooth minimax solution of the equation of Hamilton–Jacobi–Bellman. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2015), pp. 149-154. http://geodesic.mathdoc.fr/item/IIMI_2015_2_a19/

[1] Subbotina N. N., Kolpakova E. A., Tokmantsev T. B., Shagalova L. G., Method of characteristics for Hamilton–Jacobi–Bellman's equation, Ural Branch of RAS, Yekaterinburg, 2013, 244 pp.

[2] Kolpakova E. A., “A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws”, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 16, no. 5, 2010, 95–102 (in Russian)

[3] Petrovskii I. G., Lectures on the theory of ordinary differential equations, Lomonosov Moscow State University, M., 1984, 296 pp.

[4] Rockafellar R., Convex analysis, Princeton University Press, Princeton, 1970, 470 pp. | MR | Zbl

[5] Subbotin A. I., Generalized solutions of first-order PDEs: the dynamical optimization perspective, Birkhauser, Berlin, 1995, XII+314 pp. | MR