Perturbation of Volterra inclusions by impulse operator
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2012), pp. 17-20
Cet article a éte moissonné depuis la source Math-Net.Ru
For Volterra inclusions with impulsive perturbations there are considered the problems of local solvability and extendability of solutions. It is proved that the right end-point of the interval on which all the solutions exist depends lower semi-continuously on the parameters. It is also shown that, if the inclusion is a-priori bounded for some parameter value, then this value can not be an isolated point, in the sense of a-priori boundedness, moreover the solutions sets (viewed as those depending on a parameter) are Hausdorff upper semicontinuous at this point.
Keywords:
Volterra inclusions with impulse operator, extendability of solutions.
@article{IIMI_2012_1_a7,
author = {A. I. Bulgakov and A. A. Grigorenko and E. A. Panasenko},
title = {Perturbation of {Volterra} inclusions by impulse operator},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {17--20},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2012_1_a7/}
}
TY - JOUR AU - A. I. Bulgakov AU - A. A. Grigorenko AU - E. A. Panasenko TI - Perturbation of Volterra inclusions by impulse operator JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2012 SP - 17 EP - 20 IS - 1 UR - http://geodesic.mathdoc.fr/item/IIMI_2012_1_a7/ LA - ru ID - IIMI_2012_1_a7 ER -
%0 Journal Article %A A. I. Bulgakov %A A. A. Grigorenko %A E. A. Panasenko %T Perturbation of Volterra inclusions by impulse operator %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2012 %P 17-20 %N 1 %U http://geodesic.mathdoc.fr/item/IIMI_2012_1_a7/ %G ru %F IIMI_2012_1_a7
A. I. Bulgakov; A. A. Grigorenko; E. A. Panasenko. Perturbation of Volterra inclusions by impulse operator. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2012), pp. 17-20. http://geodesic.mathdoc.fr/item/IIMI_2012_1_a7/
[1] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991
[2] Bulgakov A.I., Maksimov V.P., “Funktsionalnye i funktsionalno-differentsialnye vklyucheniya s volterrovymi operatorami”, Differentsialnye uravneniya, 17:8 (1981), 1362–1374 | MR | Zbl
[3] Zavalischin C.T., Sesekin A.N., Impulsnye protsessy. Modeli i prilozheniya, Nauka, M., 1991
[4] Chentsov A.G., Elementy konechno-additivnoi teorii mery, II, UGTU–UPI, Ekaterinburg, 2010
[5] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New York, 2001 | MR