A generalized solution of boundary value problem for an elliptic equation on a graph
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2012), pp. 28-29
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain an analogue of lemma Du-Bua-Reymond, we introduce subspaces $W_2^1(\Gamma)$ and the concept of generalized solutions of the corresponding boundary value problems.
Keywords:
graph-star, generalized derivative, generalized solutions.
Mots-clés : lemma Du-Bua-Reymond
Mots-clés : lemma Du-Bua-Reymond
@article{IIMI_2012_1_a11,
author = {A. S. Volkova},
title = {A generalized solution of boundary value problem for an elliptic equation on a graph},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {28--29},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2012_1_a11/}
}
TY - JOUR AU - A. S. Volkova TI - A generalized solution of boundary value problem for an elliptic equation on a graph JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2012 SP - 28 EP - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/IIMI_2012_1_a11/ LA - ru ID - IIMI_2012_1_a11 ER -
%0 Journal Article %A A. S. Volkova %T A generalized solution of boundary value problem for an elliptic equation on a graph %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2012 %P 28-29 %N 1 %U http://geodesic.mathdoc.fr/item/IIMI_2012_1_a11/ %G ru %F IIMI_2012_1_a11
A. S. Volkova. A generalized solution of boundary value problem for an elliptic equation on a graph. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2012), pp. 28-29. http://geodesic.mathdoc.fr/item/IIMI_2012_1_a11/
[1] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Fizmatlit, M., 1973, 408 pp.
[2] Smirnov V.I., Kurs vysshei matematiki, v. 4, No 1, Fizmatlit, M., 1981, 550 pp.
[3] Shilov G.E., Matematicheskii analiz. Spetsialnyi kurs, Fizmatlit, M., 1961, 435 pp.