Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 35-38
Cet article a éte moissonné depuis la source Math-Net.Ru
A classification and a visualization of phase-plain portraits for linear homogeneous systems with constant coefficients of the third order were carried out. The classification includes 41 kind, for each of them a criteria was obtained which depends on coefficients. The computer program which allows user to obtain phase-plain portraits was elaborated.
@article{IIMI_2006_2_a7,
author = {\`E. V. Vdovina and Yu. A. Klushkin},
title = {Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {35--38},
year = {2006},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/}
}
TY - JOUR AU - È. V. Vdovina AU - Yu. A. Klushkin TI - Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2006 SP - 35 EP - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/ LA - ru ID - IIMI_2006_2_a7 ER -
%0 Journal Article %A È. V. Vdovina %A Yu. A. Klushkin %T Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2006 %P 35-38 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/ %G ru %F IIMI_2006_2_a7
È. V. Vdovina; Yu. A. Klushkin. Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 35-38. http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/
[1] Tondl A., Nelineinye kolebaniya mekhanicheskikh sistem, Mir, M., 1973, 336 pp. | Zbl