Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 35-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classification and a visualization of phase-plain portraits for linear homogeneous systems with constant coefficients of the third order were carried out. The classification includes 41 kind, for each of them a criteria was obtained which depends on coefficients. The computer program which allows user to obtain phase-plain portraits was elaborated.
@article{IIMI_2006_2_a7,
     author = {\`E. V. Vdovina and Yu. A. Klushkin},
     title = {Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {35--38},
     year = {2006},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/}
}
TY  - JOUR
AU  - È. V. Vdovina
AU  - Yu. A. Klushkin
TI  - Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 35
EP  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/
LA  - ru
ID  - IIMI_2006_2_a7
ER  - 
%0 Journal Article
%A È. V. Vdovina
%A Yu. A. Klushkin
%T Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 35-38
%N 2
%U http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/
%G ru
%F IIMI_2006_2_a7
È. V. Vdovina; Yu. A. Klushkin. Visualization of phase-plain portraits of linear homogeneous systems of differential equations with constant coefficients of third order. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 35-38. http://geodesic.mathdoc.fr/item/IIMI_2006_2_a7/

[1] Tondl A., Nelineinye kolebaniya mekhanicheskikh sistem, Mir, M., 1973, 336 pp. | Zbl