On the sets of nonlinear close equations problem solving by polar Newton's method
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 205-206
Cet article a éte moissonné depuis la source Math-Net.Ru
The systems of close nonlinear equations problem solving is considered. Computational procedure based on polar Newton method is described.
@article{IIMI_2006_2_a47,
author = {M. Yu. Petrov},
title = {On the sets of nonlinear close equations problem solving by polar {Newton's} method},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {205--206},
year = {2006},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2006_2_a47/}
}
TY - JOUR AU - M. Yu. Petrov TI - On the sets of nonlinear close equations problem solving by polar Newton's method JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2006 SP - 205 EP - 206 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2006_2_a47/ LA - ru ID - IIMI_2006_2_a47 ER -
%0 Journal Article %A M. Yu. Petrov %T On the sets of nonlinear close equations problem solving by polar Newton's method %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2006 %P 205-206 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2006_2_a47/ %G ru %F IIMI_2006_2_a47
M. Yu. Petrov. On the sets of nonlinear close equations problem solving by polar Newton's method. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 205-206. http://geodesic.mathdoc.fr/item/IIMI_2006_2_a47/
[1] Verzhbitskii V. M., Petrov M. Yu., “O polyusnom metode Nyutona v konechnomernykh i v banakhovykh prostranstvakh”, Zhurn. vychislit. matematiki i mat. fiziki, 44:6 (2004), 979–985 | MR | Zbl
[2] Lomaev G. V., Petrov M. Yu., Khodyrev A. V., “O matematicheskom modelirovanii GPR v protsesse pereklyucheniya bistabilnykh ferromagnetikov”, Vestn. Udm. un-ta. Ser. Fizika, 2005, no. 4, 195–202 | MR