Asymptotical theory of linear systems with delays
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 21-26
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that linear system with aftereffect on each finite-dimensional subspace of solutions with finite Lyapunov index is asimptotically homothetic under natral assumptions to a system of ordinary differential equations. The problem of the uniform exponential stability of a system with aftereffect is studied.
@article{IIMI_2006_2_a4,
author = {T. S. Bykova and E. L. Tonkov},
title = {Asymptotical theory of linear systems with delays},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {21--26},
year = {2006},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2006_2_a4/}
}
TY - JOUR AU - T. S. Bykova AU - E. L. Tonkov TI - Asymptotical theory of linear systems with delays JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2006 SP - 21 EP - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2006_2_a4/ LA - ru ID - IIMI_2006_2_a4 ER -
T. S. Bykova; E. L. Tonkov. Asymptotical theory of linear systems with delays. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 21-26. http://geodesic.mathdoc.fr/item/IIMI_2006_2_a4/
[1] Bykova T. S., Tonkov E. L., “Lyapunovskaya privodimost lineinoi sistemy s posledeistviem”, Differentsialnye uravneniya, 39:6 (2003), 731–737 | MR | Zbl
[2] Bykova T. S., Tonkov E. L., “Privodimost lineinoi sistemy s posledeistviem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 11, no. 1, Ekaterinburg, 2005, 53–64