Some problems of an escape from a group of pursuers
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 105-108
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved the possibility of an escape of the meeting in the second and third order differential game of a group of pursuers and an evader. It is proved the possibility of an escape of the «soft» meeting a inertion evader of group inertion objects.
@article{IIMI_2006_2_a24,
author = {L. S. Chirkova},
title = {Some problems of an escape from a group of pursuers},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {105--108},
year = {2006},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2006_2_a24/}
}
TY - JOUR AU - L. S. Chirkova TI - Some problems of an escape from a group of pursuers JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2006 SP - 105 EP - 108 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2006_2_a24/ LA - ru ID - IIMI_2006_2_a24 ER -
L. S. Chirkova. Some problems of an escape from a group of pursuers. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 105-108. http://geodesic.mathdoc.fr/item/IIMI_2006_2_a24/
[1] Prokopovich P. V., Chikrii A. A., “Odna differentsialnaya igra ubeganiya”, Doklad AN USSR. Ser. A, 1989, 71–74 | MR | Zbl
[2] Ivanov R. P., “K voprosu o myagkoi poimke v differentsialnykh igrakh so mnogimi dogonyayuschimi i odnim uklonyayuschimsya igrokom”, Tr. matem. in-ta AN SSSR, 185, 1988, 74–84 | MR
[3] Petrov N. N., ““Myagkaya” poimka v primere L. S. Pontryagina so mnogimi uchastnikami”, Prikladnaya matematika i mekhanika, 67:5 (2003), 759–770 | MR | Zbl
[4] Petrov N. N., Teoriya igr, Izd-vo Udm. un-ta, Izhevsk, 1997, 197 pp. | MR | Zbl
[5] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146