Cauchy problem for nonlinear functional-differential equation
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 53-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We offer confirmations about solveness and persistent dependentness from initial conditions of functional-differential equations with operator of volterra according to A. N. Tihonov, which acts in arbitrary Banah spaces. With proper chose of spaces those results can be used to investigate not only classical functional-differential equations, but singular, impulsive, hybrid systems and so on.
@article{IIMI_2006_2_a11,
     author = {E. S. Zhukovskiy},
     title = {Cauchy problem for nonlinear functional-differential equation},
     journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
     pages = {53--56},
     year = {2006},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIMI_2006_2_a11/}
}
TY  - JOUR
AU  - E. S. Zhukovskiy
TI  - Cauchy problem for nonlinear functional-differential equation
JO  - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
PY  - 2006
SP  - 53
EP  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IIMI_2006_2_a11/
LA  - ru
ID  - IIMI_2006_2_a11
ER  - 
%0 Journal Article
%A E. S. Zhukovskiy
%T Cauchy problem for nonlinear functional-differential equation
%J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
%D 2006
%P 53-56
%N 2
%U http://geodesic.mathdoc.fr/item/IIMI_2006_2_a11/
%G ru
%F IIMI_2006_2_a11
E. S. Zhukovskiy. Cauchy problem for nonlinear functional-differential equation. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2006), pp. 53-56. http://geodesic.mathdoc.fr/item/IIMI_2006_2_a11/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, Institut kompyuternykh issledovanii, M., 2002, 384 pp.

[2] Zhukovskii E. S., “Nelineinoe uravnenie Volterra v banakhovom funktsionalnom prostranstve”, Izv. vuzov. Matematika, 2005, no. 10 (521), 17–28 | MR