Levels of the Schrödinger operator with a perturbed non-local potential
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2006), pp. 98-104
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the one-dimensional Schrödinger operator with a potential that is a sum of a local potential and a two-rank operator. We prove that this Schrödinger operator has the unique level in the neighborhood of zero. The asimptotic behaviour of this level is investigated.
@article{IIMI_2006_1_a6,
author = {M. S. Smetanina},
title = {Levels of the {Schr\"odinger} operator with a perturbed non-local potential},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {98--104},
year = {2006},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2006_1_a6/}
}
TY - JOUR AU - M. S. Smetanina TI - Levels of the Schrödinger operator with a perturbed non-local potential JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2006 SP - 98 EP - 104 IS - 1 UR - http://geodesic.mathdoc.fr/item/IIMI_2006_1_a6/ LA - ru ID - IIMI_2006_1_a6 ER -
%0 Journal Article %A M. S. Smetanina %T Levels of the Schrödinger operator with a perturbed non-local potential %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2006 %P 98-104 %N 1 %U http://geodesic.mathdoc.fr/item/IIMI_2006_1_a6/ %G ru %F IIMI_2006_1_a6
M. S. Smetanina. Levels of the Schrödinger operator with a perturbed non-local potential. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2006), pp. 98-104. http://geodesic.mathdoc.fr/item/IIMI_2006_1_a6/
[1] Kheine V., Koen M., Ueir D., Teoriya psevdopotentsiala, Mir, M., 1973, 560 pp.
[2] Smetanina M. S., “Ob uravnenii Shredingera s nelokalnym potentsialom”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2002, no. 3 (26), 99–114
[3] Smetanina M. S., “Asimptotika urovnei odnomernogo operatora Shredingera s nelokalnym potentsialom”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2005, no. 1 (31), 99–106
[4] Albeverio S., Gestezi F., Kheeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991, 568 pp. | MR