On levels of the one-dimensional Schrödinger operator on the boundary of the essential spectrum
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2005), pp. 107-112
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the one-dimensional Schrödinger operator $H$ with the non-local perturbed step potential. We prove that there exists the unique level (i.e. eigenvalue or resonance of the operator $H$) in the neighborhood of the boundary of the essential spectrum of the operator $H$. We investigate the asymptotic behaviour of this level.
@article{IIMI_2005_1_a3,
author = {N. I. Pletnikova},
title = {On levels of the one-dimensional {Schr\"odinger} operator on the boundary of the essential spectrum},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {107--112},
year = {2005},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2005_1_a3/}
}
TY - JOUR AU - N. I. Pletnikova TI - On levels of the one-dimensional Schrödinger operator on the boundary of the essential spectrum JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2005 SP - 107 EP - 112 IS - 1 UR - http://geodesic.mathdoc.fr/item/IIMI_2005_1_a3/ LA - ru ID - IIMI_2005_1_a3 ER -
%0 Journal Article %A N. I. Pletnikova %T On levels of the one-dimensional Schrödinger operator on the boundary of the essential spectrum %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2005 %P 107-112 %N 1 %U http://geodesic.mathdoc.fr/item/IIMI_2005_1_a3/ %G ru %F IIMI_2005_1_a3
N. I. Pletnikova. On levels of the one-dimensional Schrödinger operator on the boundary of the essential spectrum. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 1 (2005), pp. 107-112. http://geodesic.mathdoc.fr/item/IIMI_2005_1_a3/
[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975, 240 pp.
[2] Pletnikova N. I., “Ob odnomernom uravnenii Shredingera s nelokalnym potentsialom tipa vozmuschennoi stupenki”, Izvestiya Instituta matematiki i informatiki UdGU. Izhevsk, 2004, no. 3(29), 95–108
[3] Chuburin Yu. P., “Ob operatore Shredingera s malym potentsialom tipa vozmuschennoi stupenki”, Teor. i matem. fizika, 120:2 (1999), 277–290 | MR | Zbl
[4] Chuburin Yu. P., “O popadanii sobstvennogo znacheniya (rezonansa) operatora Shredingera na granitsu zony”, Teor. i matem. fizika, 126:2 (2001), 196–205 | MR | Zbl