On the asymptotic behavior of solutions to a class of differential-difference equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 41-42
Cet article a éte moissonné depuis la source Math-Net.Ru
The forced delay differential equation $$\dot x(t)=a(t)x(t-\omega),\ t\in\mathbb{R}_{+}$$ with complex coefficient $a(t)$ satisfying the condition $a(t+\omega)=Ma(t)$, $M\in\mathbb{C}$, is being considered. Effective sufficient conditions for asymptotic behaviour of solutions were obtained, in particular, the conditions for solutions' boundedness, convergence to some constant value and unboundedness.
@article{IIMI_2002_2_a9,
author = {M. I. Dodkin},
title = {On the asymptotic behavior of solutions to a class of differential-difference equations},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {41--42},
year = {2002},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2002_2_a9/}
}
TY - JOUR AU - M. I. Dodkin TI - On the asymptotic behavior of solutions to a class of differential-difference equations JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 41 EP - 42 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2002_2_a9/ LA - ru ID - IIMI_2002_2_a9 ER -
%0 Journal Article %A M. I. Dodkin %T On the asymptotic behavior of solutions to a class of differential-difference equations %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2002 %P 41-42 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2002_2_a9/ %G ru %F IIMI_2002_2_a9
M. I. Dodkin. On the asymptotic behavior of solutions to a class of differential-difference equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 41-42. http://geodesic.mathdoc.fr/item/IIMI_2002_2_a9/
[1] Rekhlitskii Z. I., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii v banakhovom prostranstve”, DAN SSSR, 111:1 (1956), 29–32
[2] Rekhlitskii Z. I., “Ob ustoichivosti reshenii periodicheskikh differentsialno-raznostnykh uravnenii”, Izv. AN SSSR, 30:5 (1966), 971–974