Generality of proof of theorems about iterative methods convergence
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 35-38
Cet article a éte moissonné depuis la source Math-Net.Ru
Two theorems are presented, which allow to omit the end of proofs of convergence theorems about fast-convergent iterative methods of solving of nonlinear operator equations in Banach spaces.
@article{IIMI_2002_2_a7,
author = {V. M. Verzhbitsky},
title = {Generality of proof of theorems about iterative methods convergence},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {35--38},
year = {2002},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2002_2_a7/}
}
TY - JOUR AU - V. M. Verzhbitsky TI - Generality of proof of theorems about iterative methods convergence JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 35 EP - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2002_2_a7/ LA - ru ID - IIMI_2002_2_a7 ER -
V. M. Verzhbitsky. Generality of proof of theorems about iterative methods convergence. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 35-38. http://geodesic.mathdoc.fr/item/IIMI_2002_2_a7/
[1] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984, 742 pp. | MR | Zbl
[2] Ulm S. Yu., “Ob iteratsionnykh metodakh s posledovatelnoi approksimatsiei obratnogo operatora”, Izv. AN ESSR. Fiz., matem., 16:4 (1967), 403–411 | MR
[3] Verzhbitskii V. M., “O skhodimosti posledovatelnostei elementov banakhovykh prostranstv k nulyam nelineinykh operatorov”, Vestn. Perm. gos. tekh. un-ta, 2002 (to appear)
[4] Verzhbitskii V. M., Chislennye metody (lineinaya algebra i nelineinye uravneniya), Vyssh. shkola, M., 2000, 266 pp.
[5] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shkola, M., 2002, 848 pp.