A criterion of partial stability for a linear system of differential-difference equations
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 103-106
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotical partial stability problem for a solution of a differential-difference equation with a constant matrix is considered. It is reduced to the analysis of situation of zeros of a polynomial defined by the system matrix. This polynomial can be constructed effectively.
@article{IIMI_2002_2_a30,
author = {K. M. Chudinov},
title = {A criterion of partial stability for a linear system of differential-difference equations},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {103--106},
year = {2002},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2002_2_a30/}
}
TY - JOUR AU - K. M. Chudinov TI - A criterion of partial stability for a linear system of differential-difference equations JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 103 EP - 106 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2002_2_a30/ LA - ru ID - IIMI_2002_2_a30 ER -
%0 Journal Article %A K. M. Chudinov %T A criterion of partial stability for a linear system of differential-difference equations %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2002 %P 103-106 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2002_2_a30/ %G ru %F IIMI_2002_2_a30
K. M. Chudinov. A criterion of partial stability for a linear system of differential-difference equations. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 103-106. http://geodesic.mathdoc.fr/item/IIMI_2002_2_a30/
[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, 1-e izd., Nauka, M., 1991, 280 pp. | MR | Zbl
[2] Ilin V. A., Poznyak E. G., Lineinaya algebra, Nauka, M., 1974, 296 pp. | MR
[3] Rekhlitskii Z. I., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom v banakhovom prostranstve”, Dokl. AN SSSR, 111:1 (1956), 29–32
[4] Vorotnikov V. I., Ustoichivost dinamicheskikh sistem po otnosheniyu k chasti peremennykh, Nauka, M., 1991, 288 pp. | MR | Zbl