Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 101-102
Cet article a éte moissonné depuis la source Math-Net.Ru
Main result is that for linear systems of Ito differential equations $dx(t)=A(t)x(t)dt+B(t)x(t)w(dt)+f(t)dt$, $t\in \mathbb{R}$, the bounded (in mean) solution problem is solvable for any bounded $f(t)$ only if the system is exponentially stable.
@article{IIMI_2002_2_a29,
author = {A. V. Chistyakov},
title = {Solutions bounded on the axis for linear inhomogeneous systems of differential equations of {Ito}},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {101--102},
year = {2002},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2002_2_a29/}
}
TY - JOUR AU - A. V. Chistyakov TI - Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 101 EP - 102 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2002_2_a29/ LA - ru ID - IIMI_2002_2_a29 ER -
%0 Journal Article %A A. V. Chistyakov %T Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2002 %P 101-102 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2002_2_a29/ %G ru %F IIMI_2002_2_a29
A. V. Chistyakov. Solutions bounded on the axis for linear inhomogeneous systems of differential equations of Ito. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 101-102. http://geodesic.mathdoc.fr/item/IIMI_2002_2_a29/