On necessary and sufficient conditions for the controllability of nonlinear systems in small
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 65-66
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtained the necessary and sufficient conditions of local controllability over the nonlinear system. These results are also applied in the «critical» case when the system of linear approximation of the nonlinear system don't locally controllable.
@article{IIMI_2002_2_a16,
author = {Yu. V. Masterkov},
title = {On necessary and sufficient conditions for the controllability of nonlinear systems in small},
journal = {Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta},
pages = {65--66},
year = {2002},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIMI_2002_2_a16/}
}
TY - JOUR AU - Yu. V. Masterkov TI - On necessary and sufficient conditions for the controllability of nonlinear systems in small JO - Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta PY - 2002 SP - 65 EP - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/IIMI_2002_2_a16/ LA - ru ID - IIMI_2002_2_a16 ER -
%0 Journal Article %A Yu. V. Masterkov %T On necessary and sufficient conditions for the controllability of nonlinear systems in small %J Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta %D 2002 %P 65-66 %N 2 %U http://geodesic.mathdoc.fr/item/IIMI_2002_2_a16/ %G ru %F IIMI_2002_2_a16
Yu. V. Masterkov. On necessary and sufficient conditions for the controllability of nonlinear systems in small. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, no. 2 (2002), pp. 65-66. http://geodesic.mathdoc.fr/item/IIMI_2002_2_a16/
[1] Tonkov E. L., “Upravlyaemost nelineinoi sistemy po lineinomu priblizheniyu”, Prikladnaya matematika i mekhanika, 38:4 (1974), 599–606 | MR | Zbl
[2] Masterkov Yu. V., “Nekotorye voprosy upravlyaemosti nelineinykh sistem”, Izvestiya Instituta matematika i informatiki UdGU, 1999, no. 2(17), 41–101 | MR