On generation of the group $PGL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute
The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 143-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of the paper relate to the following general problem. Find natural finite generating sets of elements of a given linear group over a finitely generated commutative ring. Of particular interest are coefficient rings that are generated by a single element, for example, the ring of integers or the ring of Gaussian integers. We prove that a projective general linear group of dimension $n$ over the ring of Gaussian integers is generated by three involutions two of which commute if and only if $n$ is greater than $4$ and $4$ does not divide $n$. Earlier, M. A. Vsemirnov, R. I. Gvozdev, D. V. Levchuk and the authors of this paper solved a similar problem for the special and projective special linear groups.
Keywords: projective general linear group, the ring of Gaussian integers, generating triples of involutions.
@article{IIGUM_2024_50_a9,
     author = {Ya. N. Nuzhin and T. B. Shaipova},
     title = {On generation of the group $PGL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {143--151},
     year = {2024},
     volume = {50},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a9/}
}
TY  - JOUR
AU  - Ya. N. Nuzhin
AU  - T. B. Shaipova
TI  - On generation of the group $PGL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 143
EP  - 151
VL  - 50
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a9/
LA  - ru
ID  - IIGUM_2024_50_a9
ER  - 
%0 Journal Article
%A Ya. N. Nuzhin
%A T. B. Shaipova
%T On generation of the group $PGL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 143-151
%V 50
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a9/
%G ru
%F IIGUM_2024_50_a9
Ya. N. Nuzhin; T. B. Shaipova. On generation of the group $PGL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute. The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 143-151. http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a9/

[1] Vsemirnov M.V., Gvozdev R.I., Nuzhin Ya.N., Shaipova T.B., “On generation of the groups $PSL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions,two of which commute”, Mathematical Notes, 114:3 (2024), 289–300 | DOI | DOI | MR | Zbl

[2] Gvozdev R.I., Nuzhin Ya.N., Shaipova T.B., “On Generation Groups $PSL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute”, The Bulletin of Irkutsk State University. Series Mathematics, 40 (2022), 49–62 | DOI | MR | Zbl

[3] Kargapolov M.I., Merzlyakov Yu.I., Fundamentals of group theory, Nauka Publ, M., 1982 | MR

[4] Kostrikin A.I., Introduction to algebra, Nauka Publ, M., 1977 | MR

[5] Levchuk D. V., “On generation of the group $PSL_7(\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, Bulletin of Novosibirsk State Univ., 9:1 (2009), 35–38 | Zbl

[6] Nuzhin Ya. N., “On generating sets of involutions of simple finite groups”, Algebra and Logic, 58:3 (2019), 426–434 | DOI | MR | Zbl

[7] Steinberg R., Lectures on Chevalley groups, Mir Publ, M., 1975

[8] Timofeenko I.A., Generating multiplets of linear groups over the ring of integers, Cand. sci. diss. Abstr., Krasnoyarsk, 2017, 72 pp. (in Russian) | Zbl

[9] Levchuk D. V., Nuzhin Ya. N., “On generation of the group $PSL_n (\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, J. Sib. Fed. Univ. Math. Phys., 2008, no. 2, 133–139 | MR | Zbl