A note on pseudofinite acyclic graphs
The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 116-124
Voir la notice de l'article provenant de la source Math-Net.Ru
Acyclic graphs approximated by finite acyclic graphs are considered. It is proved that any countably categorical acyclic graph is smoothly approximable. An example of pseudofinite acyclic graph theory is given, which has an even, odd, and infinite number of rays.
Keywords:
approximation of theory, tree, acyclic graph, pseudofinite theory, smoothly approximated structure
Mots-clés : pseudofinite graph.
Mots-clés : pseudofinite graph.
@article{IIGUM_2024_50_a7,
author = {N. D. Markhabatov and Y. R. Baissalov},
title = {A note on pseudofinite acyclic graphs},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {116--124},
publisher = {mathdoc},
volume = {50},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a7/}
}
TY - JOUR AU - N. D. Markhabatov AU - Y. R. Baissalov TI - A note on pseudofinite acyclic graphs JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 116 EP - 124 VL - 50 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a7/ LA - en ID - IIGUM_2024_50_a7 ER -
N. D. Markhabatov; Y. R. Baissalov. A note on pseudofinite acyclic graphs. The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 116-124. http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a7/