On the locality of formal distributions over right-symmetric and Novikov algebras
The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 83-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dong Lemma in the theory of vertex algebras states that the locality property of formal distributions over a Lie algebra is preserved under the action of a vertex operator. A similar statement is known for associative algebras. We study local formal distributions over pre-Lie (right-symmetric), pre-associative (dendriform), and Novikov algebras to show that the analogue of the Dong Lemma holds for Novikov algebras but does not hold for pre-Lie and pre-associative ones.
Mots-clés : conformal algebra
Keywords: locality function, pre-Lie algebra, Novikov algebra.
@article{IIGUM_2024_50_a5,
     author = {L. A. Bokut and P. S. Kolesnikov},
     title = {On the locality of formal distributions over right-symmetric and {Novikov} algebras},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {83--100},
     year = {2024},
     volume = {50},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a5/}
}
TY  - JOUR
AU  - L. A. Bokut
AU  - P. S. Kolesnikov
TI  - On the locality of formal distributions over right-symmetric and Novikov algebras
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 83
EP  - 100
VL  - 50
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a5/
LA  - ru
ID  - IIGUM_2024_50_a5
ER  - 
%0 Journal Article
%A L. A. Bokut
%A P. S. Kolesnikov
%T On the locality of formal distributions over right-symmetric and Novikov algebras
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 83-100
%V 50
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a5/
%G ru
%F IIGUM_2024_50_a5
L. A. Bokut; P. S. Kolesnikov. On the locality of formal distributions over right-symmetric and Novikov algebras. The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 83-100. http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a5/

[1] Balinskii A.A., Novikov S.P., “Poisson brackets of hydrodynamics type, Frobenius algebras and Lie algebras”, Soviet Math. Dokl, 32:1 (1985), 228–231 | MR | Zbl

[2] Bokut L.A., Chen Y., Li Y., “Gröbner–Shirshov bases for Vinberg–Koszul–Gerstenhaber right-symmetric algebras”, J. Math. Sci. (N. Y.), 166:5 (2010), 603–612 | DOI | MR | Zbl

[3] Gel'fand I.M., Dorfman I.Ya., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl, 13:4 (1979), 248–262 | DOI | MR | MR | Zbl

[4] Kolesnikov P.S., Nesterenko A.A., “Conformal envelopes of Novikov–Poisson algebras”, Sib. Math. J., 64:3 (2023), 598–610 | DOI | MR | Zbl

[5] C. Bai, O. Bellier, L. Guo, X. Ni, “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Not. IMRN, 2013, no. 3, 485–524 | DOI | MR | Zbl

[6] Bakalov B., D' Andrea A., Kac V. G., “Theory of finite pseudoalgebras”, Adv. Math., 162 (2001), 1–140 | DOI | MR | Zbl

[7] Bokut L. A., Chen Y., Zhang Z., “Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras”, J. Algebra Appl., 16:1 (2017), 1750001 | DOI | MR | Zbl

[8] D'Andrea A., Kac V. G., “Structure theory of finite conformal algebras”, Selecta Math. New Ser., 4 (1998), 377–418 | DOI | MR | Zbl

[9] Dotsenko V., Tamaroff P., “Endofunctors and Poincaré–Birkhoff–Witt theorems”, Int. Math. Res. Not. IMRN, 2021, no. 16, 12670–12690 | DOI | MR | Zbl

[10] Dzhumadil'daev A. S., Löfwall C., “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology, Homotopy Appl., 4:2 (2002), 165–190 | DOI | MR | Zbl

[11] Fattori D., Kac V. G., “Classification of finite simple Lie conformal superalgebras”, J. Algebra, 258:1 (2002), 23–59 | DOI | MR | Zbl

[12] Frenkel E., Ben-Zvi D., Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, 88, 2nd ed., AMS, Providence, RI, 2004 | DOI | MR | Zbl

[13] Gubarev V., “Poincaré–Birkhoff–Witt theorem for pre-Lie and post-Lie algebras”, J. Lie Theory, 30:1 (2020), 223–238 | MR | Zbl

[14] Gubarev V. Yu., Kolesnikov P. S., “Embedding of dendriform algebras into Rota-Baxter algebras”, Cent. Eur. J. Math., 11:2 (2013), 226–245 | DOI | MR | Zbl

[15] Hong Y., Bai C., “On antisymmetric infinitesimal conformal bialgebras”, J. Algebra, 586 (2021), 325–356 | DOI | MR | Zbl

[16] Hong Y., Li F., “Left-symmetric conformal algebras and vertex algebras”, J. Pure and Appl. Algebra, 219:8 (2015), 3543–3567 | DOI | MR | Zbl

[17] Kac V. G., Vertex Algebras for Beginners, Univ. Lect. Ser., 10, AMS, Providence, RI, 1997 | DOI | MR

[18] Cantarini N., Kac V. G., “Classification of linearly compact simple Jordan and generalized Poisson superalgebras”, J. Algebra, 313:1 (2007), 100–124 | DOI | MR | Zbl

[19] Kac V. G., “Formal distribution algebras and conformal algebras”, 12th international congress of mathematical physics (ICMP97), eds. De Wit D. et al., Internat. Press, Cambridge, MA, 1999, 80–97 | MR | Zbl

[20] Kolesnikov P. S., “Associative conformal algebras with finite faithful representation”, Adv. Math., 202:2 (2006), 602–637 | DOI | MR | Zbl

[21] Kolesnikov P., “Gröbner–Shirshov bases for pre-associative algebras”, Comm. Algebra, 45:12 (2017), 5283–5296 | DOI | MR | Zbl

[22] Kolesnikov P. S., “Universal enveloping Poisson conformal algebras”, Internat. J. Algebra Comput., 30:5 (2020), 1015–1034 | DOI | MR | Zbl

[23] Loday J.-L., “Dialgebras”, Dialgebras and related operads, Lectures Notes in Math., 1763, eds. Loday J.-L., Frabetti A., Chapoton F., Goichot F., Springer-Verl., Berlin, 2001, 7–66 | DOI | MR | Zbl

[24] Loday J.-L., “Une version non commutative des algébres de Lie: les algébres de Leibniz”, Enseign. Math., 39 (1993), 269–293 | MR | Zbl

[25] Loday J.-L., Pirashvili T., “Universal enveloping algebras of Leibniz algebras and (co)homology”, Math. Ann., 296 (1993), 139–158 | DOI | MR | Zbl

[26] Pei J., Bai C., Guo L., Ni X., “Replicators, Manin white product of binary operads and average operators”, New trends in algebras and combinatorics, World Scientific Publishing Co., Hackensack, NJ, 2020, 317–353 | DOI | MR | Zbl

[27] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217 (1999), 496–527 | DOI | MR | Zbl

[28] Yuan L., “$O$-operators and Nijenhuis operators of associative conformal algebras”, J. Algebra, 609 (2022), 245–291 | DOI | MR | Zbl

[29] Zelmanov E. I., “On the structure of conformal algebras”, Proc. Intern. Conf. on Combinatorial and Computational Algebra, Contemp. Math., 264, AMS, Providence, RI, 2000, 139–153 | DOI | MR | Zbl