Mots-clés : convergence
@article{IIGUM_2024_50_a4,
author = {Kh. A. Khachatryan and H. S. Petrosyan},
title = {On an integral equation with concave nonlinearity},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {66--82},
year = {2024},
volume = {50},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a4/}
}
Kh. A. Khachatryan; H. S. Petrosyan. On an integral equation with concave nonlinearity. The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 66-82. http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a4/
[1] Gevorkyan G.G., Engibaryan N.B., “New theorems for the renewal integral equation”, J. Contemp. Math. Anal., Armen. Acad. Sci., 32:1 (1997), 2–16 | MR | Zbl
[2] Engibaryan N.B., “On a problem in nonlinear radiative transfer”, Astrophysics, 2 (1966), 12–14 | DOI
[3] Kogan M.N., Rarefied Gas Dynamics, Nauka Publ, M., 1969
[4] Kolmogorov A.N., Fomin S.V., Elements of the theory of functions and functional analysis, v. 1, 2, Dover Publ., Mineola, New York, 1999, 288 pp. | MR | MR
[5] Sidorov N.A., Dreglea Sidorov Lev Ryan D., “On the solution of Hammerstein integral equations with loads and bifurcation parameters”, The Bulletin of Irkutsk State University. Series Mathematics, 43 (2023), 78–90 | DOI | MR | Zbl
[6] Sidorov N.A., Sidorov D.N., “Nonlinear Volterra Equations with Loads and Bifurcation Parameters: Existence Theorems and Construction of Solutions”, Differantial Equations, 57 (2021), 1640–1651 | DOI | DOI | MR | Zbl
[7] Khachatryan Kh.A., Petrosyan H.S., “On alternating and bounded solutions of one class of integral equations on the entire axis with monotonic nonlinearity”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 24:4 (2020), 644–662 (in Russian) | DOI | Zbl
[8] Khachatryan A.Kh., Khachatryan Kh.A., “A nonlinear integral equation of Hammerstein type with a noncompact operator”, Sb. Math., 201:4 (2010), 595–606 | DOI | DOI | MR | Zbl
[9] Barichello L. B., Siewert C. E., “The temperature-jump problem in rarefied-gas dynamics”, European J. of Applied Mathematics, 11 (2000), 353–364 | DOI | MR | Zbl
[10] Cercignani C., The Boltzmann equation and its applications, Appl. Math. Sci., Springer, New-York, 1988, 455 pp. | DOI | MR | Zbl
[11] Khachatryan Kh. A., “One-parameter family of solutions for one class of hammerstein nonlinear equations on a half-line”, Doklady Mathematics, 80:3 (2009), 872–876 | DOI | MR | Zbl
[12] Villani C., “Cercignani's conjecture is sometimes true and always almost true”, Comm. Math. Phys., 234:3 (2003), 455–490 | DOI | MR | Zbl