Integration of the loaded negative order nonlinear Schrodinger equation in the class of periodic functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 51-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider the loaded negative order nonlinear Schrodinger equation (NSE) in the class of periodic functions. It is shown that the loaded negative order nonlinear Schrodinger equation can be integrated by the inverse spectral problem method. The evolution of the spectral data of the Dirac operator with a periodic potential associated with the solution of the loaded negative order nonlinear Schrodinger equation is determined. The results obtained make it possible to apply the inverse problem method to solve the loaded negative order nonlinear Schrodinger equation in the class of periodic ones. Important corollaries are obtained about the analyticity and period of the solution concerning the spatial variable.
Keywords: loaded negative order nonlinear Schrodinger equation, Dirac operator, inverse spectral problem, Dubrovin’s system of equations, trace formulas.
Mots-clés : soliton
@article{IIGUM_2024_50_a3,
     author = {M. M. Khasanov and I. D. Rakhimov and D. B. Azimov},
     title = {Integration of the loaded negative order nonlinear {Schrodinger} equation in the class of periodic functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {51--65},
     year = {2024},
     volume = {50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a3/}
}
TY  - JOUR
AU  - M. M. Khasanov
AU  - I. D. Rakhimov
AU  - D. B. Azimov
TI  - Integration of the loaded negative order nonlinear Schrodinger equation in the class of periodic functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 51
EP  - 65
VL  - 50
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a3/
LA  - en
ID  - IIGUM_2024_50_a3
ER  - 
%0 Journal Article
%A M. M. Khasanov
%A I. D. Rakhimov
%A D. B. Azimov
%T Integration of the loaded negative order nonlinear Schrodinger equation in the class of periodic functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 51-65
%V 50
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a3/
%G en
%F IIGUM_2024_50_a3
M. M. Khasanov; I. D. Rakhimov; D. B. Azimov. Integration of the loaded negative order nonlinear Schrodinger equation in the class of periodic functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 51-65. http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a3/

[1] Akhmediev N.N., Korneev V.I., “Modulation instability and periodic solutions of the nonlinear Schrodinger equation”, Theor Math Phys., 69 (1986), 1089–1093 | DOI | MR | Zbl

[2] Baltaeva I.I., Rakhimov I.D., Khasanov M.M., “Exact traveling wave solutions of the loaded modified Korteweg-de vries equation”, The Bulletin of Irkutsk State University. Series Mathematics, 41 (2022), 85–95 | DOI | MR | Zbl

[3] Currie S., Roth T., Watson B., “Borg's periodicity theorems for first-order self-adjoint systems with complex potentials”, Proc. Edinb. Math. Soc., 60 (2017), 615–633 | DOI | MR | Zbl

[4] Djakov P.B., Mityagin B.S., “Instability zones of periodic 1-dimensional Schrodinger and Dirac operators”, Russian Math. Surveys, 61 (2006), 663–766 | DOI | MR | Zbl

[5] Gomes J.F., de Melo G.R., Zimerman A.H., “A class of mixed integrable models”, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 1–11 | DOI | MR

[6] Gomes J.F., Starvaggi F.G., Melo G.R., Zimerman A.H., “Negative even grade mKdV hierarchy and its soliton solutions”, J. Phys. A: Math. Theor., 42 (2009), 445204 | DOI | MR | Zbl

[7] Hasanov A. B., Hasanov M. M., “Integration of the nonlinear Shrodinger equation with an additional term in the class of periodic functions”, Theoretical and Mathematical Physics, 199 (2019), 525–532 | DOI | MR | Zbl

[8] Its A.R., “On the connection between soliton and finite-zone solutions of the nonlinear Schrodinger equation”, Spectral theory. Wave processes, 10, Publishing House of Leningrad State University, L., 1982, 118–137

[9] Jingqun Wang, Lixin Tian, Yingnan Zhang, “Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability”, Physics Letters A, 383 (2019), 1689–1697 | DOI | MR | Zbl

[10] Khasanov A.B., Ibragimov A.M., “On the inverse problem for the Dirac operator with periodic potential”, Uzbek Mat. J., 2001, 48–55

[11] Khasanov A.B., Yakhshimuratov A., “An analogue of G. Borg's inverse theorem for the Dirac operator”, Uzbek Math. J., 3 (2000), 40–46 | Zbl

[12] Khasanov M.M., Rakhimov I.D., “Integration of the KdV equation of negative order with a free term in the class of periodic functions”, Chebyshevskii Sbornik, 24 (2023), 266–275 | DOI | MR | Zbl

[13] Kundu A., Sahadevan R., Nalinidevi L., “Nonholonomic deformation of KdV and mKdV equations and their symmetries, hierarchies and integrability”, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 1–13 | DOI | MR

[14] Levitan B.M., Sargsyan I.S., Sturm-Liouville and Dirac Operators, Mathematics and Its Applications (Soviet Series), 59, Springer, Dordrecht, 1990 | MR | MR

[15] Lou S., “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, Journal of Mathematical Physics, 35 (1994), 2390–2396 | DOI | MR | Zbl

[16] Misjura T.V., “Characterization of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator”, Theory of Functions, Functional Analysis and Their Applications, ed. V. A. Marchenko, Publishing House of Kharkiv State University named after A. M. Gorky, Kharkiv, 1978, 90–101 (in Russian) | MR | Zbl

[17] Qiao Z., Strampp W., “Negative order MKdV hierarchy and a new integrable Neumann-like system”, Physica A: Statistical Mechanics and its Applications, 313:3-4 (2002), 365–380 | DOI | MR | Zbl

[18] Urazboev G.U., Baltaeva I.I., Atanazarova Sh.E., “Soliton Solutions of the Negative Order Modified Korteweg - de Vries Equation”, The Bulletin of Irkutsk State University. Series Mathematics, 47 (2024), 63–77 | DOI | MR | Zbl

[19] Urazboev G.U., Baltaeva I.I., Ismoilov O.B., “Integration of the negative order Korteweg-de Vries equation by the inverse scattering method”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33 (2023), 523–533 | DOI | MR | Zbl

[20] Urazboev G.U., Baltaeva I.I., Rakhimov I.D., “The Generalized (G'/G)-Expansion Method for the Loaded Korteweg-de Vries Equation”, J. Appl. Ind. Math., 15 (2021), 679–685 | DOI | DOI | MR | Zbl

[21] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32 (2022), 228–239 | DOI | MR | Zbl

[22] Urazboev G.U., Khasanov M.M., Baltaeva I.I., “Integration of the negative order Korteweg-de Vries equation with a special source”, The Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 31–43 | DOI | MR | Zbl

[23] Urazboev G.U., Khasanov M.M., Rakhimov I.D., “Generalized (G'/G)- expansion method and its applications to the loaded Burgers equation”, Azerbaijan journal of mathematics, 13:2 (2023), 248–257 | DOI | MR | Zbl

[24] Urazboev G.U., Yakhshimuratov A.B., Khasanov M.M., “Integration of negative-order modified Korteweg-de Vries equation in a class of periodic functions”, Theoret. and Math. Phys., 217 (2023), 1689–1699 | DOI | MR | Zbl

[25] Verosky J.M., “Negative powers of Olver recursion operators”, Journal of Mathematical Physics, 32 (1991), 1733–1736 | DOI | MR | Zbl

[26] Yakhshimuratov A.B., Matyokubov M.M. Integration of a loaded Korteweg-de Vries equation in a class of periodic functions, Russ Math., 60 (2016), 72–76 | DOI | MR | Zbl