Keywords: collocation method, Chebyshev polynomials, integral equations.
@article{IIGUM_2024_50_a1,
author = {O. V. Germider and V. N. Popov},
title = {On the collocation method in constructing a solution to the {Volterra} integral equation of the second kind using {Chebyshev} and {Legendre} polynomials},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {19--35},
year = {2024},
volume = {50},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a1/}
}
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - On the collocation method in constructing a solution to the Volterra integral equation of the second kind using Chebyshev and Legendre polynomials JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 19 EP - 35 VL - 50 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a1/ LA - ru ID - IIGUM_2024_50_a1 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T On the collocation method in constructing a solution to the Volterra integral equation of the second kind using Chebyshev and Legendre polynomials %J The Bulletin of Irkutsk State University. Series Mathematics %D 2024 %P 19-35 %V 50 %U http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a1/ %G ru %F IIGUM_2024_50_a1
O. V. Germider; V. N. Popov. On the collocation method in constructing a solution to the Volterra integral equation of the second kind using Chebyshev and Legendre polynomials. The Bulletin of Irkutsk State University. Series Mathematics, Tome 50 (2024), pp. 19-35. http://geodesic.mathdoc.fr/item/IIGUM_2024_50_a1/
[1] Goursat E., Cours D'Analyse Mathématique, part 2, v. 3, GTTI Publ., M., 1934, 318 pp. (in Russian)
[2] Demidovich B.P., Maron I.A., Fundamentals of computational mathematics, Fizmatgiz Publ., M., 1963, 664 pp. (in Russian) | MR
[3] Karchevsky A.L., “Solution of the Convolution Type Volterra Integral Equations of the First Kind by the Quadrature-Sum Method”, J. Appl. Ind. Math., 14 (2020), 503–512 | DOI | DOI | MR | Zbl
[4] Suetin P.K., Classical orthogonal polynomials, Nauka Publ., M., 1976, 416 pp. (in Russian)
[5] Brunner H., Volterra integral equations: an introduction to theory and applications, Cambridge University Press, Cambridge, 2017, 387 pp. | MR | Zbl
[6] Hildebrand F.B., Introduction to Numerical Analysis, Dover Publications, New York, 1987, 704 pp. | MR | Zbl
[7] Hu X., Wang Z., Hu B., “A collocation method based on roots of Chebyshev polynomial for solving Volterra integral equations of the second kind”, Applied Mathematics Letters, 29 (2023), 108804 | DOI | MR
[8] Ji T., Hou J., Yang C., “The operational matrix of Chebyshev polynomials for solving pantograph-type Volterra integro-differential equations”, Adv. Contin. Discrete Models, 57 (2022), 1–16 | DOI | MR
[9] Khidir A. A., “A new numerical technique for solving Volterra integral equations using Chebyshev spectral method”, Math. Probl. Eng., 2021 (2021), 1–11 | DOI | MR
[10] Kress R., Linear Integral Equations, Springer, New York, 2013, 412 pp. | MR
[11] Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method, J. Comput. Appl. Math., 417 (2023), 114537 | DOI
[12] Liang H., “Discontinuous Galerkin approximations to second-kind Volterra integral equations with weakly singular kernel”, Appl. Numer. Math., 179 (2022), 170–182 | DOI | MR | Zbl
[13] Liu S., Trenkler G., “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4:1 (2008), 160–177 | MR | Zbl
[14] Loh J. R., Phang C., “A new numerical scheme for solving system of Volterra integro-differential equation”, Alex. Eng. J., 57:2 (2018), 1117–1124 | DOI
[15] Mandal M., Nelakanti G., “Superconvergence results of Legendre spectral projection methods for Volterra integral equations of second kind”, Comp. Appl. Math., 37 (2018), 4007–4022 | DOI | MR | Zbl
[16] Mason J., Handscomb D., Chebyshev polynomials, CRC Press, Florida, 2003, 335 pp. | MR | Zbl
[17] Mirzaee F., Bimesl S., “A new Euler matrix method for solving systems of linear Volterra integral equations with variable coefficients”, J. Egypt. Math. Soc., 22:2 (2014), 238–248 | DOI | MR | Zbl
[18] Shen J., Tang T., Wang L., Spectral Methods, Springer, Berlin–Heidelberg, 2011, 472 pp. | DOI | MR | Zbl
[19] Solodusha S. V., “On a class of the first kind Volterra equations in a problem of identification of a linear nonstationary dynamic system”, Russian Universities Reports. Mathematics, 28:144 (2023), 406–413 | DOI | MR | Zbl
[20] Tang T., Xu X., Cheng J., “On spectral methods for Volterra integral equations and the convergence analysis”, J. Comput. Math., 26:6 (2008), 825–837 | MR | Zbl
[21] Tynda A.N., Noeiaghdam S., Sidorov D.N., “Polynomial spline collocation method for solving weakly regular Volterra integral equations of the first kind”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 62–79 | DOI | MR | Zbl
[22] Wazwaz A. M., Linear and Nonlinear Integral Equations, Springer, Berlin, 2011, 639 pp. | DOI | MR | Zbl