The satisfiability problem in linear multi-agent knowledge logic based on $\mathbb{N}$
    
    
  
  
  
      
      
      
        
The Bulletin of Irkutsk State University. Series Mathematics, Tome 49 (2024), pp. 124-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we explore the linear logic of multi-agent knowledge using multivalued models. The logic of the language contains the unary operators $K_{j}$ — $j$ — the agent knows, $ULK_{G}$ — unstable local knowledge, $E_{G}$ — stable local knowledge in the group, and the binary logical operator $AP_{G}$ - the majority opinion. We will show some examples that demonstrate the diversity of this language and its capabilities. Technically we prove decidability of satisfiability problem in the resulting models for our multi-agent logic, develop verification technique and provide some examples.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
modal logic, temporal logic, common knowledge, deciding algorithms, multi-agent logic.
                    
                    
                    
                  
                
                
                @article{IIGUM_2024_49_a8,
     author = {N. A. Protsenko and V. V. Rybakov},
     title = {The satisfiability problem in linear multi-agent knowledge logic based on $\mathbb{N}$},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {124--134},
     publisher = {mathdoc},
     volume = {49},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a8/}
}
                      
                      
                    TY  - JOUR
AU  - N. A. Protsenko
AU  - V. V. Rybakov
TI  - The satisfiability problem in linear multi-agent knowledge logic based on $\mathbb{N}$
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 124
EP  - 134
VL  - 49
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a8/
LA  - en
ID  - IIGUM_2024_49_a8
ER  - 
                      
                      
                    %0 Journal Article
%A N. A. Protsenko
%A V. V. Rybakov
%T The satisfiability problem in linear multi-agent knowledge logic based on $\mathbb{N}$
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 124-134
%V 49
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a8/
%G en
%F IIGUM_2024_49_a8
                      
                      
                    N. A. Protsenko; V. V. Rybakov. The satisfiability problem in linear multi-agent knowledge logic based on $\mathbb{N}$. The Bulletin of Irkutsk State University. Series Mathematics, Tome 49 (2024), pp. 124-134. http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a8/
                  
                