@article{IIGUM_2024_49_a4,
author = {N. R. Andriyanova},
title = {Uniform ultimate boundedness of {Lur'e} systems with switchings and delays},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {63--77},
year = {2024},
volume = {49},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a4/}
}
TY - JOUR AU - N. R. Andriyanova TI - Uniform ultimate boundedness of Lur'e systems with switchings and delays JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 63 EP - 77 VL - 49 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a4/ LA - en ID - IIGUM_2024_49_a4 ER -
N. R. Andriyanova. Uniform ultimate boundedness of Lur'e systems with switchings and delays. The Bulletin of Irkutsk State University. Series Mathematics, Tome 49 (2024), pp. 63-77. http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a4/
[1] Aleksandrov A.Y., “On the asymptotic stability and ultimate boundedness of solutions of a class of nonlinear systems with delay”, Differ. Equ., 59:4 (2023), 441–451 | DOI | MR | Zbl
[2] Aleksandrov A.Y., “On the existence of a common Lyapunov function for a family of nonlinear positive systems”, Systems Control Lett., 147 (2021), 104832 | DOI | MR | Zbl
[3] Aleksandrov A., Andriyanova N., Efimov D., “Stability analysis of Persidskii time-delay systems with synchronous and asynchronous switching”, Internat. J. Robust Nonlinear Control, 32:6 (2022), 3266–3280 | DOI | MR | Zbl
[4] Andriyanova N.R., “Stability of Lurie-type systems with asynchronous and synchronous switching and constant delays”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19:3 (2023), 320–336 (in Russian) | DOI | MR
[5] Arcak M., Teel A., “Input-to-state stability and boundedness in Lurie systems”, Proceedings of the 2002 American Control Conference, v. 1, IEEE, 2002, 62–67 (IEEE Cat. No. CH37301) | DOI | MR
[6] Efimov D., Aleksandrov A., “Analysis of robustness of homogeneous systems with time delays using Lyapunov–Krasovskii functionals”, Internat. J. Robust Nonlinear Control, 31:9 (2021), 3730–3746 | DOI | MR | Zbl
[7] Guiver C., Logemann H., “The circle criterion for a class of sector-bounded dynamic nonlinearities”, Math. Control Signals Systems, 34:3 (2022), 461–492 | DOI | MR | Zbl
[8] Hale J.K., Theory of functional differential equations, Springer-Verlag, Heidelberg–Berlin–New York, 1977, 366 pp. | MR | Zbl
[9] Hopfield J.J., Tank D.W., “Computing with neural circuits: A model”, Science, 233:4764 (1986), 625–633 | DOI
[10] Liu Z. et al., “Event-triggered dynamic output feedback control for genetic regulatory network systems”, Circuits, Systems, and Signal Processing, 41:6 (2022), 3172–3198 | DOI | MR | Zbl
[11] Liu G., Hua C., Guan X., “Asynchronous stabilization of switched neutral systems: A cooperative stabilizing approach”, Nonlinear Anal. Hybrid Syst., 33 (2019), 380–392 | DOI | MR | Zbl
[12] Taghieh A., Mohammadzadeh A., Tavoosi J., Mobayen S., Rojsiraphisal T., Asad J.H., Zhilenkov A., “Observer-based control for nonlinear time-delayed asynchronously switching systems: A new LMI approach”, Mathematics, 9:22 (2021), 2968 | DOI
[13] Zheng D., Zhang H., Zhang J. A., Zheng W., Su S.W., “Stability of asynchronous switched systems with sequence-based average dwell time approaches”, J. Franklin Inst., 357:4 (2020), 2149–2166 | DOI | MR | Zbl
[14] Zubov V.I., Stability of motion. Lyapunov methods and their application, Translations 1984, Vysshaya Shkola Publ, M., 1973, 272 pp. (in Russian) | MR