@article{IIGUM_2024_49_a1,
author = {I. V. Lutoshkin and M. S. Rybina},
title = {Optimization in the model of control over a socio-economic system in conditions of a mass disease},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {16--31},
year = {2024},
volume = {49},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a1/}
}
TY - JOUR AU - I. V. Lutoshkin AU - M. S. Rybina TI - Optimization in the model of control over a socio-economic system in conditions of a mass disease JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 16 EP - 31 VL - 49 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a1/ LA - ru ID - IIGUM_2024_49_a1 ER -
%0 Journal Article %A I. V. Lutoshkin %A M. S. Rybina %T Optimization in the model of control over a socio-economic system in conditions of a mass disease %J The Bulletin of Irkutsk State University. Series Mathematics %D 2024 %P 16-31 %V 49 %U http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a1/ %G ru %F IIGUM_2024_49_a1
I. V. Lutoshkin; M. S. Rybina. Optimization in the model of control over a socio-economic system in conditions of a mass disease. The Bulletin of Irkutsk State University. Series Mathematics, Tome 49 (2024), pp. 16-31. http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a1/
[1] Bykov A.A., “On Methodology for Economic Assessment of the Value of Statistical Life (Explanatory Note)”, Issues of Risk Analysis, 4:2 (2007), 178–191 (in Russian)
[2] Bank of Russia key rate, , Bank of Russia (in Russian) (accessed 19.03.2023) https://www.cbr.ru/hd_base/KeyRate/
[3] Lutoshkin I.V., “The parameterization method for optimizing the systems which have integro-differential equations”, The Bulletin of Irkutsk State University. Series Mathematics, 4:1 (2011), 44–56 | MR | Zbl
[4] Lutoshkin I.V., Rybina M.S., “Modelling of Regional Economic Management in Conditions of Mass Diseases”, Economy of regions, 19:2 (2023), 299–313 (in Russian) | DOI | MR
[5] The average length of service in the Russian Federation upon retirement is 34.5 years, RIA News, , 2023 (in Russian) (accessed 19.01.2023) https://ria.ru/20131119/977986173.html
[6] “Application of the ARIMA model on the COVID-2019 epidemic dataset / D. Benvenuto, M. Giovanetti, L. Vassallo et al.”, Data in Brief, 29 (2020) | DOI
[7] Gomez M. C., Rubio F. A., Mondragon E. I., “Qualitative analysis of generalized multistage epidemic model with immigration”, Mathematical Biosciences and Engineering, 20:9 (2023), 15765–15780 | DOI | MR
[8] Brauer F., Castillo-Chavez C., Mathematical models in population biology and epidemiology, Texts in Applied Mathematics, 40, Springer, New York, 2012, 508 pp. | DOI | MR | Zbl
[9] Luebben G., Gonzalez-Parra G., Cervantes B., “Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA”, Mathematical Biosciences and Engineering, 20:6 (2023), 10828–10865 | DOI | MR
[10] Lutoshkin I.V., Rybina M.S., “Optimal solution in the model of control over an economic system in the condition of a mass disease”, Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 23:2 (2023), 264–273 | DOI | MR
[11] Castillo-Chavez C., S. Blower P. van den Driessche, D. Kirschner, A. A. Yakubu (eds.), Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, Springer, New York, 2002, 377 pp. | DOI | MR
[12] W. M. Getz, R. Salter, O. Muellerklein et al., “Modeling epidemics: A primer and Numerus Model Builder implementation”, Epidemics, 25 (2018), 9–19 | DOI
[13] Ovsyannikova N. I., “Problem of optimal control of epidemic in view of latent period”, Civil Aviation High Technologies, 20:2 (2017), 144–152
[14] Siettos C. I., Russo L., “Mathematical modeling of infectious disease dynamics”, Virulence, 4:4 (2013), 295–306 | DOI