@article{IIGUM_2024_49_a0,
author = {D. Yu. Karamzin},
title = {Some estimates for the jump of the derivative of the {Lagrange} multiplier function in optimal control problems with second-order state constraints},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--15},
year = {2024},
volume = {49},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a0/}
}
TY - JOUR AU - D. Yu. Karamzin TI - Some estimates for the jump of the derivative of the Lagrange multiplier function in optimal control problems with second-order state constraints JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 3 EP - 15 VL - 49 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a0/ LA - ru ID - IIGUM_2024_49_a0 ER -
%0 Journal Article %A D. Yu. Karamzin %T Some estimates for the jump of the derivative of the Lagrange multiplier function in optimal control problems with second-order state constraints %J The Bulletin of Irkutsk State University. Series Mathematics %D 2024 %P 3-15 %V 49 %U http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a0/ %G ru %F IIGUM_2024_49_a0
D. Yu. Karamzin. Some estimates for the jump of the derivative of the Lagrange multiplier function in optimal control problems with second-order state constraints. The Bulletin of Irkutsk State University. Series Mathematics, Tome 49 (2024), pp. 3-15. http://geodesic.mathdoc.fr/item/IIGUM_2024_49_a0/
[1] Arutyunov A., Optimality Conditions: Abnormal and Degenerate Problems, Springer, Dordrecht, 2000 | MR
[2] Arutyunov A. V., Karamzin D. Yu., “A Survey on Regularity Conditions for State-Constrained Optimal Control Problems and the Non-degenerate Maximum Principle”, Journal of Optimization Theory and Applications, 184:3 (2020), 697–723 | DOI | MR | Zbl
[3] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “Investigation of Controllability and Regularity Conditions for State Constrained Problems”, IFAC-PapersOnLine, 50:1 (2017), 6295–6302 | DOI
[4] R. Chertovskih, D. Karamzin, N. T. Khalil, F. L. Pereira, “An indirect numerical method for a time-optimal state-constrained control problem in a steady two-dimensional fluid flow”, 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, 2018, 1–6
[5] An Indirect Method for Regular State-Constrained Optimal Control Problems in Flow Fields / R. Chertovskih, D. Karamzin, N. T. Khalil, F. L. Pereira, IEEE Transactions on Automatic Control, 66:2 (2021), 787–793 | DOI | MR
[6] Karamzin D. Yu., Pereira F. L., “On Higher-Order State Constraints”, SIAM Journal on Control and Optimization, 61:4 (2023), 1913–1933 | DOI | MR | Zbl
[7] Mordukhovich B. Sh., “Maximum principle in the problem of time optimal response with nonsmooth constraints”, Journal of Applied Mathematics and Mechanics, 40:6 (1976), 960–969 | DOI | MR | Zbl
[8] Neustadt L. W., “An Abstract Variational Theory with Applications to a Broad Class of Optimization Problems. II. Applications”, SIAM Journal on Control, 5:1 (1967), 90–137 | DOI | MR | Zbl
[9] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Interscience, New York, 1962 | MR | Zbl
[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 2007 | MR | Zbl