@article{IIGUM_2024_48_a5,
author = {Kuldipkumar K. Chaudhary and Snehal B. Rao},
title = {A note on {Wright-type} generalized $q$-hypergeometric function},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {80--94},
year = {2024},
volume = {48},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/}
}
TY - JOUR AU - Kuldipkumar K. Chaudhary AU - Snehal B. Rao TI - A note on Wright-type generalized $q$-hypergeometric function JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 80 EP - 94 VL - 48 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/ LA - en ID - IIGUM_2024_48_a5 ER -
Kuldipkumar K. Chaudhary; Snehal B. Rao. A note on Wright-type generalized $q$-hypergeometric function. The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 80-94. http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/
[1] Al-Omari S., Kilicman A., Notes on the q-Analogues of the Natural Transforms and Some Further Applications, 2015, arXiv: 1510.00406
[2] Andrews G., q-Series: Their development and application in analysis, number theory, combinatorics, physics, and computer algebra, American Mathematical Soc., 1986 | MR | Zbl
[3] Bhardwaj H., Sharma P., “An Application of q-Hypergeometric Series”, GANITA, 71:1 (2021), 161–169 | MR | Zbl
[4] Ciavarella A., What is q-Calculus, v. 1, Course Hero, 2016
[5] Charalambides C.A., “Review of the basic discrete q-distributions”, Lattice Path Combinatorics And Applications, 58 (2019), 166–193 | DOI | MR | Zbl
[6] Ernst T., “A method for q-calculus”, Journal Of Nonlinear Mathematical Physics, 10:4 (2003), 487–525 | DOI | MR | Zbl
[7] Gasper G., Rahman M., Basic hypergeometric series, Cambridge univ. press, 2004 | MR | Zbl
[8] Gauss C.F., Disquistiones Generales circa Seriem Infinitam 1+ $\alpha$$\beta$/1. $\gamma$x+ $\alpha$ ($\alpha$+ 1) $\beta$ ($\beta$+ 1)/1.2. $\gamma$ ($\gamma$+ 1) xx+ $\alpha$ ($\alpha$+ 1)($\alpha$+ 2) $\beta$ ($\beta$+ 1)($\beta$+ 2)/1.2. 3. $\gamma$ ($\gamma$+ 1)($\gamma$+ 2) x\^ 3+ etc., Thesis, Gottingen, 1866
[9] Mansour M., “An asymptotic expansion of the q-gamma function $\Gamma _ q (x)$”, Journal Of Nonlinear Mathematical Physics, 13:4 (2006), 479–483 | DOI | MR | Zbl
[10] Mathai A., Haubold H., Special functions for applied scientists, Springer, 2008 | Zbl
[11] Rainville E.D., Special Functions, Macmillan, 1960 | MR | Zbl
[12] Rao S.B., Prajapati J.C., Shukla A.K., “Wright type hypergeometric function and its properties”, Adv. Pure Math., 3:3 (2013), 335–342 | DOI
[13] Rao S.B., Shukla A.K., “Note on generalized hypergeometric function”, Integral Transforms And Special Functions, 24:11 (2013), 896–904 | DOI | MR | Zbl
[14] Virchenko N., Kalla S., Al-Zamel A., “Some results on a generalized hypergeometric function”, Integral Transforms And Special Functions, 12:1 (2001), 89–100 | DOI | MR | Zbl
[15] Wallis J., Arithmetica infinitorum, 1655