A note on Wright-type generalized $q$-hypergeometric function
The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 80-94

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2001, Virchenko et al. published a paper on a new generalization of Gauss hypergeometric function, namely Wright-type generalized hypergeometric function. Present work aims to define the $q$-analogue generalized hypergeometric function, which reduces to generalized hypegeometric function by letting q tends to one, and study some new properties. Convergence of the series defining generalized $q$-hypergeometric function and properties including certain differentiation formulae and integral representations have been deduced.
Keywords: basic hypergeometric functions in one variable ${}_r \phi_s$, $q$-gamma functions, $q$-beta functions and integrals, $q$-calculus and related topics.
@article{IIGUM_2024_48_a5,
     author = {Kuldipkumar K. Chaudhary and Snehal B. Rao},
     title = {A note on {Wright-type} generalized $q$-hypergeometric function},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {80--94},
     publisher = {mathdoc},
     volume = {48},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/}
}
TY  - JOUR
AU  - Kuldipkumar K. Chaudhary
AU  - Snehal B. Rao
TI  - A note on Wright-type generalized $q$-hypergeometric function
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 80
EP  - 94
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/
LA  - en
ID  - IIGUM_2024_48_a5
ER  - 
%0 Journal Article
%A Kuldipkumar K. Chaudhary
%A Snehal B. Rao
%T A note on Wright-type generalized $q$-hypergeometric function
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 80-94
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/
%G en
%F IIGUM_2024_48_a5
Kuldipkumar K. Chaudhary; Snehal B. Rao. A note on Wright-type generalized $q$-hypergeometric function. The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 80-94. http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/