A note on Wright-type generalized $q$-hypergeometric function
The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 80-94
Voir la notice de l'article provenant de la source Math-Net.Ru
In 2001, Virchenko et al. published a paper on a new generalization of Gauss hypergeometric function, namely Wright-type generalized hypergeometric function. Present work aims to define the $q$-analogue generalized hypergeometric function, which reduces to generalized hypegeometric function by letting q tends to one, and study some new properties. Convergence of the series defining generalized $q$-hypergeometric function and properties including certain differentiation formulae and integral representations have been deduced.
Keywords:
basic hypergeometric functions in one variable ${}_r \phi_s$, $q$-gamma functions, $q$-beta functions and integrals, $q$-calculus and related topics.
@article{IIGUM_2024_48_a5,
author = {Kuldipkumar K. Chaudhary and Snehal B. Rao},
title = {A note on {Wright-type} generalized $q$-hypergeometric function},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {80--94},
publisher = {mathdoc},
volume = {48},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/}
}
TY - JOUR AU - Kuldipkumar K. Chaudhary AU - Snehal B. Rao TI - A note on Wright-type generalized $q$-hypergeometric function JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 80 EP - 94 VL - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/ LA - en ID - IIGUM_2024_48_a5 ER -
%0 Journal Article %A Kuldipkumar K. Chaudhary %A Snehal B. Rao %T A note on Wright-type generalized $q$-hypergeometric function %J The Bulletin of Irkutsk State University. Series Mathematics %D 2024 %P 80-94 %V 48 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/ %G en %F IIGUM_2024_48_a5
Kuldipkumar K. Chaudhary; Snehal B. Rao. A note on Wright-type generalized $q$-hypergeometric function. The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 80-94. http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a5/