Keywords: homogenous Neumann condition, approximate solution, heat kernel.
@article{IIGUM_2024_48_a4,
author = {Rabah Gherdaoui and Steave Selvaduray and Hisao Fujita Yashima},
title = {Convergence of approximate solutions for transport-diffusion equation in the half-space with {Neumann} condition},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {64--79},
year = {2024},
volume = {48},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/}
}
TY - JOUR AU - Rabah Gherdaoui AU - Steave Selvaduray AU - Hisao Fujita Yashima TI - Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 64 EP - 79 VL - 48 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/ LA - ru ID - IIGUM_2024_48_a4 ER -
%0 Journal Article %A Rabah Gherdaoui %A Steave Selvaduray %A Hisao Fujita Yashima %T Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition %J The Bulletin of Irkutsk State University. Series Mathematics %D 2024 %P 64-79 %V 48 %U http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/ %G ru %F IIGUM_2024_48_a4
Rabah Gherdaoui; Steave Selvaduray; Hisao Fujita Yashima. Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition. The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 64-79. http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/
[1] Aouaouda M., Ayadi A., Fujita Yashima H., “Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 26:2 (2022), 222–258 (in Russian) | DOI | Zbl
[2] Budak B.M., Samarskii A.A., Tikhonov A.N., A collection of problems on mathematical physics, Fizmatlit Publ, M., 2004 (in Russian) | MR
[3] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and quasilinear equations of parabolic type, transl. from Russian, AMS, Providence, R.I., 1968 | MR | MR
[4] Fujita Yashima H., Ait Mahiout L., “Convergence of solution of transport-diffusion system to that of transport system”, Bull. Buryat State Univ. Math. Inform., 2023, no. 1, 22–36 (in Russian) | DOI
[5] Ait Mahiout L., Fujita Yashima H., “Convergence de la solution d'une équation de transport-diffusion vers la solution d'une équation de transport”, Ann. Math. Afr., 10 (2023), 105–124
[6] Desmond J. H., Mao X., Stuart A. M., “Strong convergence of Euler-type methods for nonlinear stochastic differential equations”, SIAM J. Numer. Anal., 40:3 (2002), 1041–1063 | DOI | MR | Zbl
[7] Freidlin M. I., Wentzell A. D., Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenchafften, 260, $3^{rd}$ Ed., Springer, Berlin–Heidelberg, 2012 | DOI | MR | Zbl
[8] Gherdaoui R., Taleb L., Selvaduray S., “Convergence of the heat kernel approximated solutions of the transport-diffusion equation in the half-space”, J. Math. Anal. Appl., 527:2 (2023), 127507 | DOI | MR | Zbl
[9] Smaali H., Fujita Yashima H., “Une generalisation de l'approximation par une moyenne locale de la solution de l'equation de transport-diffusion”, Ann. Math. Afr., 9 (2021), 89–108 | MR | Zbl
[10] Taleb L., Selvaduray S., Fujita Yashima H., “Approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Ann. Math. Afr., 8 (2020), 53–73 | MR