Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition
The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 64-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we examine the question about the approximation of the solution to a transport-diffusion equation in a half-space with the homogenous Neumann condition. Using heat kernel and translation corresponding to the transport in each step of time discretization, we construct a family of approximate solutions. By even extension the given functions and the approximate solutions are transformed into functions defined on the whole space, what makes it possible to establish estimates of approximate solutions and their derivatives and to prove their convergence. We show that the limit function satisfies the equation and the boundary condition.
Mots-clés : transport-diffusion equation
Keywords: homogenous Neumann condition, approximate solution, heat kernel.
@article{IIGUM_2024_48_a4,
     author = {Rabah Gherdaoui and Steave Selvaduray and Hisao Fujita Yashima},
     title = {Convergence of approximate solutions for transport-diffusion equation in the half-space with {Neumann} condition},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {64--79},
     year = {2024},
     volume = {48},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/}
}
TY  - JOUR
AU  - Rabah Gherdaoui
AU  - Steave Selvaduray
AU  - Hisao Fujita Yashima
TI  - Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 64
EP  - 79
VL  - 48
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/
LA  - ru
ID  - IIGUM_2024_48_a4
ER  - 
%0 Journal Article
%A Rabah Gherdaoui
%A Steave Selvaduray
%A Hisao Fujita Yashima
%T Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 64-79
%V 48
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/
%G ru
%F IIGUM_2024_48_a4
Rabah Gherdaoui; Steave Selvaduray; Hisao Fujita Yashima. Convergence of approximate solutions for transport-diffusion equation in the half-space with Neumann condition. The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 64-79. http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a4/

[1] Aouaouda M., Ayadi A., Fujita Yashima H., “Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 26:2 (2022), 222–258 (in Russian) | DOI | Zbl

[2] Budak B.M., Samarskii A.A., Tikhonov A.N., A collection of problems on mathematical physics, Fizmatlit Publ, M., 2004 (in Russian) | MR

[3] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and quasilinear equations of parabolic type, transl. from Russian, AMS, Providence, R.I., 1968 | MR | MR

[4] Fujita Yashima H., Ait Mahiout L., “Convergence of solution of transport-diffusion system to that of transport system”, Bull. Buryat State Univ. Math. Inform., 2023, no. 1, 22–36 (in Russian) | DOI

[5] Ait Mahiout L., Fujita Yashima H., “Convergence de la solution d'une équation de transport-diffusion vers la solution d'une équation de transport”, Ann. Math. Afr., 10 (2023), 105–124

[6] Desmond J. H., Mao X., Stuart A. M., “Strong convergence of Euler-type methods for nonlinear stochastic differential equations”, SIAM J. Numer. Anal., 40:3 (2002), 1041–1063 | DOI | MR | Zbl

[7] Freidlin M. I., Wentzell A. D., Random perturbations of dynamical systems, Grundlehren der mathematischen Wissenchafften, 260, $3^{rd}$ Ed., Springer, Berlin–Heidelberg, 2012 | DOI | MR | Zbl

[8] Gherdaoui R., Taleb L., Selvaduray S., “Convergence of the heat kernel approximated solutions of the transport-diffusion equation in the half-space”, J. Math. Anal. Appl., 527:2 (2023), 127507 | DOI | MR | Zbl

[9] Smaali H., Fujita Yashima H., “Une generalisation de l'approximation par une moyenne locale de la solution de l'equation de transport-diffusion”, Ann. Math. Afr., 9 (2021), 89–108 | MR | Zbl

[10] Taleb L., Selvaduray S., Fujita Yashima H., “Approximation par une moyenne locale de la solution de l'équation de transport-diffusion”, Ann. Math. Afr., 8 (2020), 53–73 | MR