Parametric transformation of a quadratic functional in a linear control system
The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 21-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear-quadratic problem on a set of piecewise linear controls is considered. The control quality criterion is determined by indefinite matrices and contains control parameters for quadratic forms. A procedure for searching parameters based on the problem of minimizing the condition function of a general matrix of quadratic form with a restriction in the form of the condition of its sign definiteness. As a result of such regularization, the initial objective function acquires the property of strong convexity or concavity with all the positive consequences in terms of the effective solution of the corresponding optimization problems. An illustrative example is given that demonstrates the analytical solution of a parametric problem.
Keywords: linear-quadratic problem with parameters, spectral condition number, optimization of parameters.
@article{IIGUM_2024_48_a1,
     author = {Vladimir A. Srochko and Elena V. Aksenyushkina},
     title = {Parametric transformation of a quadratic functional in a linear control system},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {21--33},
     year = {2024},
     volume = {48},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a1/}
}
TY  - JOUR
AU  - Vladimir A. Srochko
AU  - Elena V. Aksenyushkina
TI  - Parametric transformation of a quadratic functional in a linear control system
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 21
EP  - 33
VL  - 48
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a1/
LA  - ru
ID  - IIGUM_2024_48_a1
ER  - 
%0 Journal Article
%A Vladimir A. Srochko
%A Elena V. Aksenyushkina
%T Parametric transformation of a quadratic functional in a linear control system
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 21-33
%V 48
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a1/
%G ru
%F IIGUM_2024_48_a1
Vladimir A. Srochko; Elena V. Aksenyushkina. Parametric transformation of a quadratic functional in a linear control system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 48 (2024), pp. 21-33. http://geodesic.mathdoc.fr/item/IIGUM_2024_48_a1/

[1] Arguchintsev A.V., Srochko V.A., “Regularization procedure for bilinear optimal control problems based on a finite-dimensional model”, Bulletin of St. Petersburg University. Applied mathematics. Computer science. Management processes, 18:1 (2022), 179–187 (in Russian) | DOI | MR

[2] Arguchintsev A.V., Srochko V.A., “Solution of a linear-quadratic problem on a set of piecewise constant controls with parameterization of the functional”, Proceedings of the Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 28, no. 3, 2022, 5–16 (in Russian) | DOI | MR | Zbl

[3] Vasiliev F.P., Optimization methods, v. 1, ICNMO Publ., M., 2011, 620 pp. (in Russian)

[4] Gabasov R., Kirillova F.M., Pavlenok N.S., “Constructing software and positional solutions to a linear-quadratic optimal control problem”, Journal calculation. matem. and checkmate. physics, 48:10 (2008), 1748–1779 (in Russian) | MR | Zbl

[5] Gorbunov V.K., Lutoshkin I.V., “Development and experience of using the parameterization method in degenerate dynamic optimization problems”, Izvestiya RAS. Theory and control systems, 2004, no. 5, 67–84 (in Russian)

[6] Izmailov A.F., Solodov M.V., Numerical optimization methods, Fizmatlit Publ, M., 2005, 304 pp. (in Russian) | MR

[7] Srochko V.A., Aksenyushkina E.V., Antonik V.G., “Solution of linear-quadratic optimal control problem based on finite-dimensional models”, The Bulletin of Irkutsk State University. Series Mathematics, 33 (2021), 3–16 (in Russian) | DOI | DOI

[8] Srochko V.A., Aksenyushkina E.V., “Parametric regularization of a linear-quadratic problem on a set of piecewise linear controls”, The Bulletin of Irkutsk State University. Series Mathematics, 41 (2022), 57–68 | DOI | MR | Zbl

[9] Strekalovsky A.S., Elements of nonconvex optimization, Nauka Publ, Novosibirsk, 2003, 356 pp. (in Russian)

[10] Srochko V.A., Aksenyushkina E.V., “On Resolution of an Extremum Norm Problem for the Terminal State of a Linear System”, The Bulletin of Irkutsk State University. Series Mathematics, 34 (2020), 3–17 | DOI | MR | Zbl