Automophisms of nil-triangular subrings of algebras Chevalley type $G_2$ over integral domain. I
The Bulletin of Irkutsk State University. Series Mathematics, Tome 47 (2024), pp. 93-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $N\Phi(K)$ be the nil-triangular subalgebra of the Chevalley algebra over an associative commutative ring $K$ with the identity associated with a root system $\Phi$. This paper studies the well-known problem of describing automorphisms of Lie algebras and rings $N\Phi(K)$. Automorphisms of the Lie algebra $N\Phi(K)$ under restrictions $K=2K=3K$ on ring $K$ are described by Y. Cao, D. Jiang, J. Wang (2007). When passing from algebras to Lie rings, the group of automorphisms expands. Thus, the subgroup of central automorphisms is extended, i.e. acting modulo the center, ring automorphisms induced by automorphisms of the main ring are added. For the type $A_{n}$, a description of automorphisms of Lie rings $N\Phi(K)$ over $K$ was obtained by V.M. Levchuk (1983). Automorphisms of the Lie ring $N\Phi(K)$ are described by V.M. Levchuk (1990) for type $D_4$ over $K$, and for other types by A.V. Litavrin (2017), excluding types $G_2$ and $F_4$. In this paper we describe automorphisms of a nil-triangular Lie ring of type $G_2$ over an integrity domain $K$ under the following restrictions on $K$: either $K=2K=3K$, or $3K = 0$. To study automorphisms, the upper and lower central series described in this paper, are essentially used.
Keywords: Chevalley algebra, ring, hypercentral automorphism.
Mots-clés : nil-triangular subalgebra, automorphism
@article{IIGUM_2024_47_a6,
     author = {Alyona V. Kazakova},
     title = {Automophisms of nil-triangular subrings of algebras {Chevalley} type $G_2$ over integral {domain.~I}},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {93--106},
     year = {2024},
     volume = {47},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a6/}
}
TY  - JOUR
AU  - Alyona V. Kazakova
TI  - Automophisms of nil-triangular subrings of algebras Chevalley type $G_2$ over integral domain. I
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 93
EP  - 106
VL  - 47
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a6/
LA  - ru
ID  - IIGUM_2024_47_a6
ER  - 
%0 Journal Article
%A Alyona V. Kazakova
%T Automophisms of nil-triangular subrings of algebras Chevalley type $G_2$ over integral domain. I
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 93-106
%V 47
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a6/
%G ru
%F IIGUM_2024_47_a6
Alyona V. Kazakova. Automophisms of nil-triangular subrings of algebras Chevalley type $G_2$ over integral domain. I. The Bulletin of Irkutsk State University. Series Mathematics, Tome 47 (2024), pp. 93-106. http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a6/

[1] Levchuk V.M., Litavrin A.V., “Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras”, Siberian Electronic Mathematical Reports, 13 (2016), 467–477 (in Russian) | DOI | Zbl

[2] Levchuk V.M., “Automorphisms of unipotent subgroups of lie type groups of small ranks”, Algebra and Logic, 29 (1990), 97–112 | DOI | MR | Zbl

[3] Levchuk V.M., “Automorphisms of unipotent subgroups of chevalley groups”, Algebra and Logic, 29 (1990), 211–224 | DOI | MR | Zbl

[4] Levchuk V.M., “Connections between a unitriangular group and certain rings. Chap. 2: Groups of automorphisms”, Siberian Mathematical Journal, 24 (1983), 543–557 | DOI | MR | Zbl | Zbl

[5] Levchuk V.M., Litavrin A.V., “Automorphisms of nil-triangular subrings in Chevalley algebra of orthogonal type”, Sibirskii Gosudarstvennyi Aerokosmicheskii Universitet imeni Akademika M.F. Reshetneva. Vestnik, 17:2 (2016), 324–328 (in Russian)

[6] Litavrin A.V., “Automorphisms of the nilpotent subalgebra $N\Phi(K)$ Chevalley algebra of symplectic type”, The Bulletin of Irkutsk State University. Series Mathematics, 13:3 (2015), 41–55 (in Russian) | Zbl

[7] Litavrin A.V., Automorphisms of nil-triangular subrings of algebras Chevalley of classic types, Thesis for: Cand. Sc. (Physics and Mathematics) : 01.01.06, Siberian Federal University, 2017, 74 pp. (in Russian)

[8] Cao Y., Jiang D., Wang J., “Automorphisms of certain nilpotent Lie algebras over commutative rings”, Intern. J. Algebra and Computation, 17:3 (2007), 527–555 | DOI | MR | Zbl

[9] Carter R., Simple Groups of Lie Type, Wiley and Sons, New York, 1972, 331 pp. | MR | Zbl

[10] Gibbs J.A., “Automorphisms of certain unipotent groups”, J. Algebra, 14:2 (1970), 203–208 | DOI | MR

[11] Kuzucuoglu F., Levchuk V. M., “The automorphism group of certain radical rings”, J. Algebra, 243 (2001), 473–485 | DOI | MR