Relational version of the multi-agent computation tree logic $\mathcal{CTLK}$
The Bulletin of Irkutsk State University. Series Mathematics, Tome 47 (2024), pp. 78-92

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with multi-agent computation tree logic — $\mathcal{CTLK}$ (Computation Tree Logic with Knowledge). Each agent represents its own computational route of the initial problem, and new branches of possible computational routes spawn new agents. The logic $\mathcal{CTLK}$ is a natural enrichment of $\mathcal{CTL}$ by new knowledge operators. We introduce alternative to automata Kripke's relational semantics, describes properties of $\mathcal{CTLK}^{Rel}$-frame and proves finite approximability.
Keywords: multi-agent logic, branching temporal logic, Kripke relational semantics, filtration method, finite approximability.
@article{IIGUM_2024_47_a5,
     author = {Stepan I. Bashmakov and Kirill A. Smelykh},
     title = {Relational version of the multi-agent computation tree logic $\mathcal{CTLK}$},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {78--92},
     publisher = {mathdoc},
     volume = {47},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a5/}
}
TY  - JOUR
AU  - Stepan I. Bashmakov
AU  - Kirill A. Smelykh
TI  - Relational version of the multi-agent computation tree logic $\mathcal{CTLK}$
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2024
SP  - 78
EP  - 92
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a5/
LA  - ru
ID  - IIGUM_2024_47_a5
ER  - 
%0 Journal Article
%A Stepan I. Bashmakov
%A Kirill A. Smelykh
%T Relational version of the multi-agent computation tree logic $\mathcal{CTLK}$
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2024
%P 78-92
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a5/
%G ru
%F IIGUM_2024_47_a5
Stepan I. Bashmakov; Kirill A. Smelykh. Relational version of the multi-agent computation tree logic $\mathcal{CTLK}$. The Bulletin of Irkutsk State University. Series Mathematics, Tome 47 (2024), pp. 78-92. http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a5/