Mots-clés : soliton, reflection coefficient.
@article{IIGUM_2024_47_a4,
author = {Gayrat U. Urazboev and Iroda I. Baltaeva and Shoira E. Atanazarova},
title = {Soliton solutions of the negative order modified {Korteweg} {\textendash} de {Vries} equation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {63--77},
year = {2024},
volume = {47},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a4/}
}
TY - JOUR AU - Gayrat U. Urazboev AU - Iroda I. Baltaeva AU - Shoira E. Atanazarova TI - Soliton solutions of the negative order modified Korteweg – de Vries equation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2024 SP - 63 EP - 77 VL - 47 UR - http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a4/ LA - en ID - IIGUM_2024_47_a4 ER -
%0 Journal Article %A Gayrat U. Urazboev %A Iroda I. Baltaeva %A Shoira E. Atanazarova %T Soliton solutions of the negative order modified Korteweg – de Vries equation %J The Bulletin of Irkutsk State University. Series Mathematics %D 2024 %P 63-77 %V 47 %U http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a4/ %G en %F IIGUM_2024_47_a4
Gayrat U. Urazboev; Iroda I. Baltaeva; Shoira E. Atanazarova. Soliton solutions of the negative order modified Korteweg – de Vries equation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 47 (2024), pp. 63-77. http://geodesic.mathdoc.fr/item/IIGUM_2024_47_a4/
[1] Ablowitz M.J., Been J.B., Carr L.D., “Fractional integrable and related discrete nonlinear Schrodinger equations”, Physics Letter A, 452 (2022), 128459 pp. | DOI | MR | Zbl
[2] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., “The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems”, Studies in Applied Mathematics, LII:4 (1974), 249–315 | DOI | MR
[3] Baltaeva I.I., Rakhimov I.D., Khasanov M.M., “Exact traveling wave solutions of the loaded modified Korteweg-de Vries equation”, The Bulletin of Irkutsk State University. Series Mathematics, 41 (2022), 85–95 | DOI | MR | Zbl
[4] Chen J., “Quasi-periodic solutions to the negative-order KdV hierarchy”, Int. J. Geom. Methods Mod. Phys., 15:3 (2018), 1850040 | DOI | MR | Zbl
[5] Demontis F., “Exact solutions of the modified Korteweg–de Vries equation”, Theor. Math. Phys., 168 (2011), 886–897 | DOI | MR
[6] Urazboev G., Babadjanova A.K., “On the integration of the matrix modified Korteweg-de Vries equation with a self-consistent source”, Tamkang Journal of Mathematics, 50 (2019), 281–291 | DOI | MR | Zbl
[7] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for Solving the Korteweg de Vries Equation”, Physical Review Letters, 19 (1967), 1095–1097 | DOI | MR
[8] Jingqun Wang, Lixin Tian, Yingnan Zhang, “Breather solutions of a negative order modified Korteweg-de Vries equation and its nonlinear stability”, Physics Letters A, 383 (2019), 1689–1697 | DOI | MR | Zbl
[9] Khasanov A.B., Allanazarova T.Zh., “On the modified Korteweg-de Vries equation with loaded term”, Ukrainian Mathematical Journal, 73 (2022), 1783–1809 | DOI | MR | Zbl
[10] Khasanov A.B., Yakhshimuratov A.B., “The Korteweg-de Vries Equation with a Self-Consistent Source in the Class of Periodic Functions”, Theor. Math. Phys., 164 (2010), 1008–1015 | DOI | MR | Zbl
[11] Lax P.D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[12] Olver P.J., “Evolution equations possessing infinitely many symmetries”, J.Math. Phys., 18 (1977), 1212–1215 | DOI | MR | Zbl
[13] Qiao Z., Li J., “Negative-order KdV equation with both solitons and kink wave solutions”, Europhysics Letters, 94:5 (2011), 50003 | DOI | MR
[14] Qiao Z.J., Fan E.G., “Negative-order Kortewe-de Vries equations”, Phys. Rev., 86 (2012), 016601 | DOI
[15] Reyimberganov A.A., Rakhimov I.D., “The soliton solution for the nonlinear Schrodinger equation with self-consistent source”, The Bulletin of Irkutsk State University. Series Mathematics, 36 (2021), 84–94 | DOI | MR | Zbl
[16] Shengyang Yuan, Jian Xu, “On a Riemann-Hilbert problem for the negative – order KdV equation”, Applied Mathematics Letters, 132 (2022), 108106 | DOI | MR | Zbl
[17] Urazboev G.U., Khasanov M.M., Baltaeva I.I., “Integration of the Negative Order Korteweg-de Vries Equation with a Special Source”, The Bulletin of Irkutsk State University. Series Mathematics, 44 (2023), 31–43 (in Russian) | DOI | MR | Zbl
[18] Urazboev G.U., Khasanov M.M., “Integration of the negative order Korteweg- De Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32 (2022), 228–239 | DOI | MR | Zbl
[19] Urazboev G.U, Khasanov A.B., ““Integrating the Korteweg–de Vries Equation with a Self-Consistent Source and ‘`Steplike” Initial Data’'”, Theoret. and Math. Phys., 129 (2001), 38–54 | DOI | MR | Zbl
[20] Urazboev G.U., Babadjanova A.K., Zhuaspayev T.A., “Integration of the periodic Harry Dym equation with a source”, Wave Motion, 113 (2022), 102970 | DOI | MR | Zbl
[21] Urazboev G.U., Baltaeva I.I., “Integration of the Camassa-Holm equation with a self-consistent source”, Ufa Mathematical journal, 14 (2022), 77–86 | DOI | MR
[22] Verosky J.M., “Negative powers of Olver recursion operators”, J. Math. Phys., 32 (1991), 1733–1736 | DOI | MR | Zbl
[23] Wadati M., “The modified Korteweg–de Vries equation”, J. Phys. Soc. Jpn., 34 (1973), 1289–1296 | DOI | MR | Zbl
[24] Wazwaz A.M., Xu G.Q., “Negative order modified KdV equations: multiple soliton and multiple singular soliton solutions”, Mathematical methods in the Applied Sciences, 39 (2016) | DOI | MR
[25] Zakharov V.E., Shabat A.B., “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Zh. Eksp. Teor. Fiz., 61 (1971), 118–134 | MR
[26] Zhang Da-Jun, Zhao Song-Lin, Sun Ying-Ying, Zhou Jhou, “Solutions to the modified Korteweg–de Vries equation”, Reviews in Mathematical Physics, 26 (2014), 1430006 | DOI | MR | Zbl