@article{IIGUM_2023_46_a4,
author = {Maksim V. Staritsyn and Nikolay I. Pogodaev and Elena V. Goncharova},
title = {Pontryagin's maximum principle and indirect descent method for optimal impulsive control of nonlocal transport equation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {66--84},
year = {2023},
volume = {46},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a4/}
}
TY - JOUR AU - Maksim V. Staritsyn AU - Nikolay I. Pogodaev AU - Elena V. Goncharova TI - Pontryagin's maximum principle and indirect descent method for optimal impulsive control of nonlocal transport equation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 66 EP - 84 VL - 46 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a4/ LA - ru ID - IIGUM_2023_46_a4 ER -
%0 Journal Article %A Maksim V. Staritsyn %A Nikolay I. Pogodaev %A Elena V. Goncharova %T Pontryagin's maximum principle and indirect descent method for optimal impulsive control of nonlocal transport equation %J The Bulletin of Irkutsk State University. Series Mathematics %D 2023 %P 66-84 %V 46 %U http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a4/ %G ru %F IIGUM_2023_46_a4
Maksim V. Staritsyn; Nikolay I. Pogodaev; Elena V. Goncharova. Pontryagin's maximum principle and indirect descent method for optimal impulsive control of nonlocal transport equation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 46 (2023), pp. 66-84. http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a4/
[1] Ambrosio L., Gigli N., Savare G., Gradient Flows: In Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zurich, Birkhauser, Boston, 2005 | MR | Zbl
[2] Averboukh Y., “Viability theorem for deterministic mean field type control systems”, Set-Valued Var. Anal., 26:4 (2018), 993–1008 | DOI | MR | Zbl
[3] Averboukh Y., Khlopin D., Pontryagin maximum principle for the deterministic mean field type optimal control problem via the lagrangian approach, 2022 | DOI | Zbl
[4] Bongini M., Fornasier M., Rossi F., Solombrino F., “Mean-field Pontryagin maximum principle”, J. Optim. Theory Appl., 175 (2017), 1–38 | DOI | MR | Zbl
[5] Bonnet B., “A Pontryagin maximum principle in Wasserstein spaces for constrained optimal control problems”, ESAIM Control Optim. Calc. Var., 25:52 (2019) | DOI | MR | Zbl
[6] Bonnet B., Cipriani C., Fornasier M., Huang H., “A measure theoretical approach to the mean-field maximum principle for training NeurODEs”, Nonlinear Anal., 227 (2023), 113–161 | DOI | MR
[7] Bonnet B., Frankowska H., “Necessary optimality conditions for optimal control problems in Wasserstein spaces”, Appl. Math. Optim., 84 (2021), 1281–1330 | DOI | MR | Zbl
[8] Brezis H., Functional analysis, Sobolev spaces and Partial differential equations, Universitext, Springer, New York, 2010 | MR
[9] Cardaliaguet P., Delarue F., Lasry J.-M., Lions P.-L., The master equation and the convergence problem in mean field games, Ann. Math. Stud., 201, Princeton University Press, Princeton, NJ, 2019 | MR | Zbl
[10] Carrillo J.A., Fornasier M., Toscani G., Vecil F., “Particle, kinetic, and hydrodynamic models of swarming”, Mathematical modeling of collective behavior in socio-economic and life sciences, Birkhauser, Boston, MA, 2010, 297–336 | DOI | MR | Zbl
[11] Cavagnari G., Marigonda A., Nguyen K. T., Priuli F. S., “Generalized control systems in the space of probability measures”, Set-Valued Var. Anal., 26:3 (2018), 663–691 | DOI | MR | Zbl
[12] Chertovskih R., Pogodaev N., and Staritsyn M., Optimal control of nonlocal continuity equations: numerical solution, 2023 | DOI | MR
[13] Colombo R.M., Herty M., and Mercier M., “Control of the continuity equation with a non local flow”, ESAIM Control Optim. Calc. Var., 17:2 (2011), 353–379 | DOI | MR | Zbl
[14] Conn A., Scheinberg K., and Vicente L., Introduction to Derivative-Free Optimization, SIAM, 2009 https://epubs.siam.org/doi/book/10.1137/1.9780898718768 | Zbl
[15] Cristiani E., Frasca P., Piccoli B., “Effects of anisotropic interactions on the structure of animal groups”, Journal of mathematical biology, 62 (2011), 569–88 | DOI | MR
[16] Cucker F., Smale S., “Emergent behavior in flocks”, IEEE Trans. Autom. Control, 52:5 (2007), 852–862 | DOI | MR | Zbl
[17] Dobrushin R.L., “Vlasov equations”, Funct. Anal. Its Appl., 13 (1979), 115–123 | DOI | MR | Zbl
[18] Duchon M., Malicky P., “A Helly theorem for functions with values in metric spaces”, Tatra Mountains Mathematical Publications, 44:12 (2009), 159–168 | DOI | MR | Zbl
[19] Holden H., Risebro N.H., Front tracking for hyperbolic conservation laws, Applied Mathematical Sciences, 152, Springer, Berlin, 2015 | DOI | MR | Zbl
[20] Karamzin D.Y., de Oliveira V.A., Pereira F.L., Silva G.N., “On the properness of an impulsive control extension of dynamic optimization problems”, ESAIM Control Optim. Calc. Var., 21:3 (2015), 857–875 | DOI | MR | Zbl
[21] Kyritsi-Yiallourou S.T., Papageorgiou N.S., Handbook of Applied Analysis, Advances in Mechanics and Mathematics, 19, Springer US, Boston, MA, 2009 | DOI | MR | Zbl
[22] Marigonda A., Quincampoix M., “Mayer control problem with probabilistic uncertainty on initial positions”, J. Differ. Equ., 264:5 (2018), 3212–3252 | DOI | MR | Zbl
[23] McShane E.J., Warfield R.B., “On Filippov's Implicit Functions Lemma”, Proceedings of the American Mathematical Society, 18:1 (1967), 41–47 | DOI | MR | Zbl
[24] Miller B.M., and Rubinovich E.Y., Impulsive control in continuous and discrete-continuous systems, Kluwer Academic/Plenum Publishers, New York, 2003 | MR | Zbl
[25] Piccoli B., Rossi F., “Measure-theoretic models for crowd dynamics”, Modeling and Simulation in Science, Engineering and Technology, Springer, Basel, 2018, 137–165 | DOI | MR
[26] Pogodaev N., Staritsyn M., “Impulsive control of nonlocal transport equations”, J. Differ. Equ, 269:4 (2020), 3585–3623 | DOI | MR | Zbl
[27] Pogodaev N. I., and Staritsyn M. V., “Nonlocal balance equations with parameters in the space of signed measures”, Sbornik: Mathematics, 213:1, 69–94 | DOI | MR
[28] Srochko V.A., Iterative methods for solving optimal control problems, Fizmatlit Publ, M., 2000 (in Russian)
[29] Weinan E., Han J., and Li Q., “A mean-field optimal control formulation of deep learning”, Res. Math. Sci., 6 (2019) | DOI | MR
[30] Staritsyn M., Pogodaev N., “On a class of problems of optimal impulse control for a continuity equation”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25, no. 1, 2019, 229–244 (in Russian) | DOI | MR
[31] Staritsyn M.V., Maltugueva N.S., Pogodaev N.I., Sorokin S.P., “Impulsive control of systems with network structure describing spread of political influence”, The Bulletin of Irkutsk State University. Series Mathematics, 25 (2018), 126–143 (in Russian) | DOI | MR | Zbl