A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 46 (2023), pp. 19-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Optimal feedback synthesis for two linear optimal control problems is studied: The terminal problem and the problem of minimizing the total impulse of the control. The main contribution of the paper is a method for constructing suboptimal feedbacks in the problems under consideration, based on a linear binary data classification for datasets obtained during the simulation process or real-time control of the system.
Keywords: linear systems, optimal control synthesis, support vector machine.
Mots-clés : classification
@article{IIGUM_2023_46_a1,
     author = {Natalia M. Dmitruk and Maria A. Hatavets},
     title = {A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {19--34},
     year = {2023},
     volume = {46},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/}
}
TY  - JOUR
AU  - Natalia M. Dmitruk
AU  - Maria A. Hatavets
TI  - A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 19
EP  - 34
VL  - 46
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/
LA  - ru
ID  - IIGUM_2023_46_a1
ER  - 
%0 Journal Article
%A Natalia M. Dmitruk
%A Maria A. Hatavets
%T A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 19-34
%V 46
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/
%G ru
%F IIGUM_2023_46_a1
Natalia M. Dmitruk; Maria A. Hatavets. A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 46 (2023), pp. 19-34. http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/

[1] Balashevich N.V., Gabasov R., Kirillova F.M., “Numerical methods for open-loop and closed-loop optimization of linear control systems”, Comp. math. and math. physics, 40:6 (2000), 799–819 | MR | Zbl

[2] V'jugin V., Matematicheskie osnovy teorii mashinnogo obuchenija i prognozirovanija, MCCME Publ, M., 2013, 390 pp.

[3] Gabasov R., Dmitruk N.M., Kirillova F.M., “Optimization of the multidimensional control systems with parallelepiped constraints”, Automation and Remote Control, 63 (2002), 345–366 | DOI | MR | MR | Zbl

[4] Kirillova F.M., Dmitruk N.M., Gabasov R., “Sintez optimal'nyh sistem — optimal'noe upravlenie v real'nom vremeni”, Dinamika sistem i processy upravlenija, Ekaterinburg, 2015, 208–219

[5] Srochko V.A., Aksenyushkina E.V., Antonik V.G., “Resolution of a Linear-quadratic Optimal Control Problem Based on Finite-dimensional Models”, The Bulletin of Irkutsk State University. Series Mathematics, 37 (2021), 3–16 (in Russian) | DOI | MR | Zbl

[6] Srochko V.A., Aksenyushkina E.V., “Parametric Regularization of a Linearquadratic Problem on a Set of Piecewise Linear Controls”, The Bulletin of Irkutsk State University. Series Mathematics, 41 (2022), 57–68 (in Russian) | DOI | MR | Zbl

[7] Chernikov S.N., “Linejnye neravenstva”, Itogi nauki i tehniki, M., 1968, 137–187

[8] Borrelli F., Constrained optimal control of linear and hybrid systems, Springer, 2003 | DOI | MR | Zbl

[9] M. Hertneck et al., “Learning an approximate model predictive controller with guarantees”, IEEE Control Systems Letters, 2:3 (2018), 543–548 | DOI | MR

[10] Hou Z. S., Wang Z., “From model-based control to data-driven control: Survey, classification and perspective”, Information Sciences, 235 (2013), 3–35 | DOI | MR | Zbl