A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 46 (2023), pp. 19-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Optimal feedback synthesis for two linear optimal control problems is studied: The terminal problem and the problem of minimizing the total impulse of the control. The main contribution of the paper is a method for constructing suboptimal feedbacks in the problems under consideration, based on a linear binary data classification for datasets obtained during the simulation process or real-time control of the system.
Keywords: linear systems, optimal control synthesis, support vector machine.
Mots-clés : classification
@article{IIGUM_2023_46_a1,
     author = {Natalia M. Dmitruk and Maria A. Hatavets},
     title = {A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {19--34},
     publisher = {mathdoc},
     volume = {46},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/}
}
TY  - JOUR
AU  - Natalia M. Dmitruk
AU  - Maria A. Hatavets
TI  - A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 19
EP  - 34
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/
LA  - ru
ID  - IIGUM_2023_46_a1
ER  - 
%0 Journal Article
%A Natalia M. Dmitruk
%A Maria A. Hatavets
%T A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 19-34
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/
%G ru
%F IIGUM_2023_46_a1
Natalia M. Dmitruk; Maria A. Hatavets. A support vector machine based synthesis of suboptimal feedbacks for linear optimal control problems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 46 (2023), pp. 19-34. http://geodesic.mathdoc.fr/item/IIGUM_2023_46_a1/