On the representation of the Goursat boundary problem solution for the first order partial derivatives stochastic hyperbolic equations
The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 145-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the standard canonical form of a stochastic analog of a system of linear partial differential equations of first order hyperbolic type with Goursat boundary conditions. The stochastic analogue of the Riemann matrix in block form is introduced, an integral representation of the solution of the boundary value problem under consideration is obtained in an explicit integral form in terms of boundary conditions.
Keywords: linear inhomogeneous stochastic Goursat system, stochastic boundary value problem, Wiener process, explicit representation of the solution.
@article{IIGUM_2023_45_a9,
     author = {K. B. Mansimov and R. O. Mastaliyev},
     title = {On the representation of the {Goursat} boundary problem solution for the first order partial derivatives stochastic hyperbolic equations},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {145--151},
     year = {2023},
     volume = {45},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a9/}
}
TY  - JOUR
AU  - K. B. Mansimov
AU  - R. O. Mastaliyev
TI  - On the representation of the Goursat boundary problem solution for the first order partial derivatives stochastic hyperbolic equations
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 145
EP  - 151
VL  - 45
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a9/
LA  - ru
ID  - IIGUM_2023_45_a9
ER  - 
%0 Journal Article
%A K. B. Mansimov
%A R. O. Mastaliyev
%T On the representation of the Goursat boundary problem solution for the first order partial derivatives stochastic hyperbolic equations
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 145-151
%V 45
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a9/
%G ru
%F IIGUM_2023_45_a9
K. B. Mansimov; R. O. Mastaliyev. On the representation of the Goursat boundary problem solution for the first order partial derivatives stochastic hyperbolic equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 145-151. http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a9/

[1] Ashchepkov L.T., Vasilev O.V., Kovalenok I L., “Strengthened optimality condition for singular controls in the Goursat-Darboux system”, Differentsial'nye Uravneniya, 16:6 (1980), 1054–1059 (in Russian) | MR | Zbl

[2] Vasilyev O.V., Terletskiy V.A., “On the optimization of one class of controlled systems with distributed parameters”, Optimization of dynamical systems, Minsk, 1978, 26–30 (in Russian)

[3] Vasilev O. V., Tyatyushkin A. I., “The calculation of the optimal programmed control in a problem with distributed parameters”, Computational Mathematics and Mathematical Physics, 15:4 (1975), 229–236 | DOI | MR | Zbl

[4] Mansimov K.B., “On the theory of necessary conditions for optimality in a control problem for systems with distributed parameters”, Dokl. Math., 38:1 (1989), 116–121 | MR | Zbl

[5] Mansimov K.B., Mastaliyev R.O., “Representation of the solution of the Goursat problem for linear stochastic hyperbolic differential equations of the second order”, The Bulletin of Irkutsk State University. Series Mathematics, 36 (2021), 29–43 (in Russian) | Zbl

[6] Mansimov K.B., Mastaliyev R.O., “On the necessary optimality conditions for singular controls in Goursat-Darboux stochastic systems”, Automation and Remote control, 83:4 (2022), 536–547 | DOI | MR | Zbl

[7] Srochko V.A., “Optimality conditions for a certain class of systems with distributed parameters”, Siberian Mathematical Journal, 17:5 (1976), 819–825 | DOI | MR | Zbl

[8] Khrychov D.A., “On one stochastic quasilinear hyperbolic equation”, Math. sbornik, 116 (158):3 (11) (1981), 398–426 (in Russian) | MR | Zbl