Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 89-103
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper introduces a new numerical technique based on the implicit spectral collocation method and the fractional Chelyshkov basis functions for solving the fractional Fredholm integro-differential equations. The framework of the proposed method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton's iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with non-smooth solutions.
Keywords:
fractional integro-differential equations, fractional order Chelyshkov polynomials, spectral collocation method, convergence analysis.
@article{IIGUM_2023_45_a5,
author = {Y. Talaei and S. Noeiaghdam and H. Hosseinzadeh},
title = {Numerical solution of fractional order {Fredholm} integro-differential equations by spectral method with fractional basis functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {89--103},
publisher = {mathdoc},
volume = {45},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/}
}
TY - JOUR AU - Y. Talaei AU - S. Noeiaghdam AU - H. Hosseinzadeh TI - Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 89 EP - 103 VL - 45 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/ LA - en ID - IIGUM_2023_45_a5 ER -
%0 Journal Article %A Y. Talaei %A S. Noeiaghdam %A H. Hosseinzadeh %T Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2023 %P 89-103 %V 45 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/ %G en %F IIGUM_2023_45_a5
Y. Talaei; S. Noeiaghdam; H. Hosseinzadeh. Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 89-103. http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/