@article{IIGUM_2023_45_a5,
author = {Y. Talaei and S. Noeiaghdam and H. Hosseinzadeh},
title = {Numerical solution of fractional order {Fredholm} integro-differential equations by spectral method with fractional basis functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {89--103},
year = {2023},
volume = {45},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/}
}
TY - JOUR AU - Y. Talaei AU - S. Noeiaghdam AU - H. Hosseinzadeh TI - Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2023 SP - 89 EP - 103 VL - 45 UR - http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/ LA - en ID - IIGUM_2023_45_a5 ER -
%0 Journal Article %A Y. Talaei %A S. Noeiaghdam %A H. Hosseinzadeh %T Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2023 %P 89-103 %V 45 %U http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/ %G en %F IIGUM_2023_45_a5
Y. Talaei; S. Noeiaghdam; H. Hosseinzadeh. Numerical solution of fractional order Fredholm integro-differential equations by spectral method with fractional basis functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 89-103. http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a5/
[1] Ardabili J.S., Talaei T., “Chelyshkov collocation method for solving the two-dimensional Fredholm-Volterra integral equations”, Int. J. Appl. Comput. Math., 4 (2018), 25 | DOI | MR | Zbl
[2] Atkinson K.E., Han W., Theoretical numerical analysis; a functional analysis framework, Springer, New York, 2001 | MR | Zbl
[3] Azizipour G., Shahmorad S., “A new Tau-collocation method with fractional basis for solving weakly singular delay Volterra integro-differential equations”, J. Appl. Math. Comput., 68 (2022), 2435–2469 | DOI | MR | Zbl
[4] Brunner H., Pedas A., Vainikko G., “The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations”, Math. Comp., 68 (1999), 1079–1095 | DOI | MR | Zbl
[5] Chelyshkov V.S., “Alternative orthogonal polynomials and quadratures”, Electron. Trans. Numer. Anal., 25 (2006), 17–26 | MR | Zbl
[6] Diethelm K., The analysis of fractional differential equations, Lectures notes in mathematics, Springer, Berlin, 2010 | DOI | MR | Zbl
[7] Hale N., “An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type”, IMA J. Numer. Anal., 2018, 1–20 | MR
[8] He J.H., “Some applications of nonlinear fractional differential equations and their approximations”, Bull. Sci. Technol., 15:2 (1999), 86–90
[9] Hedayati M., Ezzati R., Noeiaghdam S., “New Procedures of a Fractional Order Model of Novel coronavirus (COVID-19) Outbreak via Wavelets Method”, Axioms, 10 (2021), 122 | DOI
[10] Jackiewicz Z., Rahman M., Welfert B. D., “Numerical solution of a Fredholm integro-differential equation modelling $\theta$-neural networks”, Appl. Math. Comput., 195 (2008), 523–536 | MR | Zbl
[11] Kumar S., Sloan I., “A new collocation-type method for Hammerstein integral equations”, Math. of Comp., 48 (1987), 585–593 | DOI | MR | Zbl
[12] Martin O., “On the homotopy analysis method for solving a particle transport equation”, Appl. Math. Model., 37:6 (2013), 3959–3967 | DOI | MR | Zbl
[13] Nevai P., “Mean Convergence of Lagrange Interpolation. III”, Trans. Math. Soc., 282:2 (1984), 669–988 | DOI | MR
[14] Anselone P.M., Collectively compact operator approximation theory, Printice-Hall, Inc., Engelwood Cliffs, N. J., 1971
[15] Noeiaghdam S., Dreglea A., Isik H., Suleman M., “Comparative Study between Discrete Stochastic Arithmetic and Floating-Point Arithmetic to Validate the Results of Fractional Order Model of Malaria Infection”, Mathematics, 9 (2021), 1435 | DOI | MR
[16] Noeiaghdam S., Micula S., Nieto J.J., “Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library”, Mathematics, 9 (2021), 1321 | DOI | MR
[17] Noeiaghdam S., Micula S., “Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-mathematical Model of Malaria Infection”, Mathematics, 9:9 (2021), 1031 | DOI | MR
[18] Noeiaghdam S., Sidorov D., “Application of the stochastic arithmetic to validate the results of nonlinear fractional model of HIV infection for CD8+T-cells”, Mathematical Analysis of Infectious Diseases, Elsevier, 2022, 259–285 | DOI
[19] Odibat Z.M., Shawagfeh N. T., “Generalized Taylor's formula”, Appl. Math. Comput., 186 (2007), 286–293 | MR | Zbl
[20] Talaei Y., Asgari M., “An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations”, Neural. Comput. Appl., 30 (2018), 1369–1376 | DOI
[21] Y. Talaei, “Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations”, J. Appl. Math. Comput., 60 (2019), 201–222 | DOI | MR | Zbl
[22] Talaei Y., Micula S., Hosseinzadeh H., Noeiaghdam S., “A novel algorithm to solve nonlinear fractional quadratic integral equations”, AIMS Mathematics, 7:7 (2022), 13237–13257 | DOI | MR
[23] Talaei Y., Shahmorad S., Mokhtary P., “A fractional version of the recursive Tau method for solving a general class of Abel-Volterra integral equations systems”, Fract. Calc. Appl. Anal., 25 (2022), 1553–1584 | DOI | MR | Zbl
[24] Yuzbas S., Sezer M., Kemanci B., “Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method”, Appl. Math. Model., 37:4 (2013), 2086–2101 | DOI | MR | Zbl
[25] Zhu L., Fan Q., “Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet”, Commun Nonlinear Sci Numer Simulat, 17:3 (2012), 2333–2341 | DOI | MR | Zbl