Guaranteed estimation problem for multi-step systems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 37-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Questions of the guaranteed estimation of nonlinear multistep systems are considered, for which part of coordinates is not observable. For disturbances we set a priori restrictions with non-negative semi-continuous functions that includes geometrical restrictions as well. As the general formulas for creation of information sets and their specification in special cases are provided. Two-dimensional logistics systems and the equations of Lotka-Volterra are considered as examples. The case of the linear equations where basic functions of convex sets are used is separately considered. Under geometrical restrictions on disturbances the rough procedure of estimation with possible use of functions of distance to the set is given.
Keywords: guaranteed estimation, multistep systems, set of attainability.
Mots-clés : information set
@article{IIGUM_2023_45_a2,
     author = {Boris I. Ananyev and Polina A. Yurovskikh},
     title = {Guaranteed estimation problem for multi-step systems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {37--53},
     year = {2023},
     volume = {45},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a2/}
}
TY  - JOUR
AU  - Boris I. Ananyev
AU  - Polina A. Yurovskikh
TI  - Guaranteed estimation problem for multi-step systems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2023
SP  - 37
EP  - 53
VL  - 45
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a2/
LA  - ru
ID  - IIGUM_2023_45_a2
ER  - 
%0 Journal Article
%A Boris I. Ananyev
%A Polina A. Yurovskikh
%T Guaranteed estimation problem for multi-step systems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2023
%P 37-53
%V 45
%U http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a2/
%G ru
%F IIGUM_2023_45_a2
Boris I. Ananyev; Polina A. Yurovskikh. Guaranteed estimation problem for multi-step systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 45 (2023), pp. 37-53. http://geodesic.mathdoc.fr/item/IIGUM_2023_45_a2/

[1] Grigor'ev F.N., Kuznecov N.A., Serebrovskij A.P., Upravlenie nablyudeniyami v avtomaticheskih sistemah, Nauka Publ, M., 1986, 218 pp. (in Russian) | MR

[2] Klark F., Optimizaciya i negladkij analiz, Nauka Publ, M., 1988, 280 pp. (in Russian) | MR

[3] Kurzhanskij A.B., Upravlenie i nablyudenie v usloviyah neopredelennosti, Nauka Publ, M., 1977, 306 pp. (in Russian)

[4] Kurzhanskij A.B., Koshcheev A.S., “Adaptivnoe ocenivanie evolyucii mnogoshagovyh sistem v usloviyah neopredelennosti”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1983, no. 2, 72–93 (in Russian)

[5] Gander M. J., Meyer-Spasche R., “An introduction to numerical integrators preserving physical properties”, Applications of Nonstandard Finite Difference Schemes, ed. R. E. Mickens, World Scientific, 2000, 181–243 | DOI | MR

[6] Kahan W., Unconventional numerical methods for trajectory calculations, Lecture Notes, CS Division, Department of EECS, University of California at Berkeley, 1993

[7] Kurzhanski A. B., Varaiya P., Dynamics and Control of Trajectory Tubes: Theory and Computation, SCFA, Birkhäuser, 2014, 445 pp. | MR

[8] Lew T., Pavone M., “Sampling-based Reachability Analysis: A Random Set Theory Approach with Adversarial Sampling”, Conference on Robot Learning, 2020, arXiv: 2008.10180 | DOI

[9] Y. Wang, J. Tian, Z. Sun, L. Wang, R. Xu, M. Li, Z. Chen, “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems”, Renewable and Sustainable Energy Reviews, 131 (2020), 110015 | DOI | MR

[10] Zhang J., Liu J., “Distributed moving horizon state estimation for nonlinear systems with bounded uncertainties”, Journal of Process Control, 23:9 (2013), 1281–1295 | DOI | MR